Skip to main content
Log in

Optimization of the probe-forming system for a scanning nuclear microprobe based on the ÉGP-10 electrostatic tandem accelerator

  • Theoretical and Mathematical Physics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The probe-forming system of a nuclear scanning microprobe based on the parametric multiplets of quadrupole lenses is optimized. The optimization is aimed at creating an ion probe with energy of several MeV that produces a micrometer spot on the target at a current of ∼100 pA. The influence of different geometric and physical parameters on the ion-optical properties of the probe-forming systems considered is determined. The optimization is carried out by varying the parameters specifying a given parametric multiplet, and its efficiency is found from a quality criterion that takes into account the beam current for given sizes of the spot and target. The beam parameters at the entrance to and at the exit from the ÉGP-10 electrostatic tandem accelerator (produced by the VNIIÉF) are involved in the optimizing calculations. These are the maximal energy, normalized brightness, transport conditions, and chromatic inhomogeneity of the beam (i.e., the energy straggling of beam particles). Allowance is also made for the parasitic components of the magnetic quadrupole lens field, which arise because of quadrupole symmetry breaking by technological and physical reasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Osipowicz, J. A. van Kan, T. C. Sum, et al., Nucl. Instrum. Methods Phys. Res. B 161–163, 83 (2000).

    Google Scholar 

  2. J. Meijer, U. Weidenmuller, P. Baving, et al., Nucl. Instrum. Methods Phys. Res. B 161–163, 898 (2000).

    Google Scholar 

  3. M. Szilagyi, Electron and Ion Optics (Plenum, New York, 1988; Mir, Moscow, 1990).

    Google Scholar 

  4. D. N. Jamieson, G. W. Grime, and F. Watt, Nucl. Instrum. Methods Phys. Res. B 40–41, 669 (1989).

    Google Scholar 

  5. A. D. Dymnikov and S. Ya. Yavor, Zh. Tekh. Fiz. 33, 851 (1963) [Sov. Phys. Tech. Phys. 8, 639 (1963)].

    Google Scholar 

  6. D. N. Jamieson, B. Rout, R. Szymanski, et al., Nucl. Instrum. Methods Phys. Res. B 190, 54 (2002).

    Article  ADS  Google Scholar 

  7. C. G. Ryan and D. N. Jamieson, Nucl. Instrum. Methods Phys. Res. B 158, 97 (1999).

    ADS  Google Scholar 

  8. A. Dymnikov and R. Hellborg, Nucl. Instrum. Methods Phys. Res. A 330, 323 (1993).

    ADS  Google Scholar 

  9. A. G. Ponomarev, K. I. Melnik, V. I. Miroshnichenko, et al., Nucl. Instrum. Methods Phys. Res. B 201, 637 (2003).

    Article  ADS  Google Scholar 

  10. L. A. Baranova and F. H. Read, Optik-Int. J. Light Electron Opt. 112, 131 (2001).

    Google Scholar 

  11. V. A. Brazhnik, A. D. Dymnikov, D. N. Jamieson, et al., Nucl. Instrum. Methods Phys. Res. B 104, 92 (1995).

    ADS  Google Scholar 

  12. H. Wollnik and M. I. Yavor, Nucl. Instrum. Methods Phys. Res. B 158, 113 (1999).

    Article  ADS  Google Scholar 

  13. A. D. Dymnikov and G. Martinez, Nucl. Instrum. Methods Phys. Res. B 130, 64 (1997).

    ADS  Google Scholar 

  14. A. G. Ponomarev, V. I. Miroshnichenko, and V. E. Storizhko, Nucl. Instrum. Methods Phys. Res. A 586, 20 (2003).

    ADS  Google Scholar 

  15. V. A. Brazhnik, V. I. Miroshnichenko, A. G. Ponomarev, et al., Nucl. Instrum. Methods Phys. Res. B 174, 385 (2001).

    Article  ADS  Google Scholar 

  16. V. Khomenko, S. Lebed, and S. Mordik, Nucl. Instrum. Methods Phys. Res. B 130, 86 (1997).

    Article  ADS  Google Scholar 

  17. M. Breese, D. Jamieson, and P. King, Materials Analysis Using a Nuclear Microprobe (Wiley, New York, 1996), p. 367.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 75, No. 2, 2005, pp. 6–12.

Original Russian Text Copyright © 2005 by Abramovich, Zavjalov, Zvenigorodsky, Ignat’ev, Magilin, Melnik, Ponomarev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abramovich, S.N., Zavjalov, V.N., Zvenigorodsky, A.G. et al. Optimization of the probe-forming system for a scanning nuclear microprobe based on the ÉGP-10 electrostatic tandem accelerator. Tech. Phys. 50, 146–151 (2005). https://doi.org/10.1134/1.1866427

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1866427

Keywords

Navigation