Skip to main content
Log in

Spatial-temporal ion structures in the earth’s magnetotail: Beamlets as a result of nonadiabatic impulse acceleration of the plasma

  • Scientific Summaries
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

The properties of high-energy ion beams (beamlets) observed in the boundary layer of the plasma sheet of the Earth’s magnetotail during short time intervals (1–2 min) have been considered. Beamlets are induced by nonlinear impulse accelerating processes occurring in the current sheet of the far regions of the geomagnetic tail. Then, moving toward the Earth along the magnetic field lines, they are detected in the magnetotail (in the plasma sheet boundary layer) and in the high-latitude part of the auroral zone in the form of short bursts of high-energy ions (with energies of several tens of keVs). The size of the localization region of the beamlets in the magnetotail and auroral zone has been determined by the epoch-superposition method, and it has been shown that beamlets are concentrated in a narrow region near the plasma sheet boundary, whose latitude size is no more than 0.8δ. This conclusion corroborates the theoretical prediction that the nonadiabatic resonant acceleration of ions occurs in a spatially localized region near the separatrix separating the open magnetic field lines and closed field lines, which contain the hot and isotropic plasmas of the plasma sheet. Based on the CLUSTER multisatellite measurements, the spatial structure of beamlets is analyzed and it has been found that the Alfvén wave arises due to the excitation of fire-hose instability at the instant of the exit of the ion beam from the current sheet to the high-latitude region of the far tail of the Earth’s magnetosphere. The longitudinal (along the magnetic field) and transverse sizes of a beamlet are estimated. It has been found that the beamlet is a dynamic plasma structure whose longitudinal size is several hundred times larger than its transverse size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. R. Lyons and T. W. Speiser, J. Geophys. Res. 87, 2276 (1982).

    ADS  Google Scholar 

  2. L. M. Zelenyi, J. Buchner, and D. V. Zogin, in Proceedings of Varenne-Abustuman Workshop on Plasma Astrophysics (Eur. Space Agency, 1988), Spec. Publ. ESA-SP285, Vol. 1, p. 227.

    Google Scholar 

  3. J. Buchner and L. M. Zelenyi, in Proceedings of Varenne-Abustuman Workshop on Plasma Astrophysics (Eur. Space Agency, 1988), Spec. Publ. ESA-SP285, Vol. 1, p. 219.

    Google Scholar 

  4. D. J. Williams, J. Geophys. Res. 86, 5501 (1981).

    ADS  Google Scholar 

  5. M. K. Andrews, P. W. Daly, and E. Keppler, Geophys. Res. Lett. 8, 987 (1981).

    ADS  Google Scholar 

  6. J. D. Winningham, F. Yasubara, S.-I. Akasofu, et al., J. Geophys. Res. 80, 3148 (1975).

    ADS  Google Scholar 

  7. T. W. Speiser, J. Geophys. Res. 70, 4219 (1965).

    ADS  Google Scholar 

  8. B. U. O. Sonnerup, J. Geophys. Res. 76, 8211 (1971).

    Google Scholar 

  9. J. Buchner and L. M. Zelenyi, Phys. Lett. A 118, 395 (1986).

    ADS  Google Scholar 

  10. J. Buchner and L. M. Zelenyi, J. Geophys. Res. 94, 11821 (1989).

    Google Scholar 

  11. J. Chen and P. J. Palmadesso, J. Geophys. Res. 91, 1499 (1986).

    ADS  Google Scholar 

  12. M. Ashour-Abdalla, J. P. Berchem, J. Buchner, and L. M. Zelenyi, J. Geophys. Res. 98, 5651 (1993).

    ADS  Google Scholar 

  13. G. Parks, L. J. Chen, M. McCarthy, et al., Geophys. Res. Lett. 25, 3285 (1998).

    ADS  Google Scholar 

  14. E. E. Grigorenko, A. O. Fedorov, and L. M. Zelenyi, Ann. Geophys. 20, 329 (2002).

    ADS  Google Scholar 

  15. J.-A. Sauvaud and R. A. Kovrazhkin, in Abstracts of 35th COSPAR Scientific Assembly, Paris (2004), COSPAR04-A-01819 D3.1-0022-04.

  16. A. Keiling, H. Reme, I. Dandouras, et al., J. Geophys. Res. 109, A05215 (2004).

  17. V. Peroomian, M. Ashour-Abdalla, and L. M. Zelenyi, J. Geophys. Res. 105, 18807 (2000).

    Google Scholar 

  18. V. Peroomian and L. Zelenyi, Space Sci. Rev. 95, 257 (2001).

    Article  ADS  Google Scholar 

  19. L. M. Zelenyi, R. A. Kovrazhkin, and J. M. Bosqued, J. Geophys. Res. 95, 12119 (1990).

    Google Scholar 

  20. J.-A. Sauvaud, D. Popescu, D. C. Delcourt, et al., J. Geophys. Res. 104, 28565 (1999).

    Google Scholar 

  21. V. A. Sergeev, J.-A. Sauvaud, D. Popescu, et al., J. Geophys. Res. 105, 18465 (2000).

    Google Scholar 

  22. E. E. Grigorenko, A. O. Fedorov, L. M. Zelenyi, et al., Adv. Space Res. 31, 1271 (2003).

    ADS  Google Scholar 

  23. R. J. DeCoster and L. A. Frank, J. Geophys. Res. 84, 5099 (1979).

    ADS  Google Scholar 

  24. T. G. Onsager, M. F. Thomsen, R. C. Elphic, et al., J. Geophys. Res. 96, 20999 (1991).

    Google Scholar 

  25. L. M. Zelenyi, A. L. Taktakishvili, E. M. Dubinin, et al., in Proceedings of the 9th COSPAR Colloquium on Magnetospheric Research with Advanced Techniques (Beijing, China, 1996), p. 125.

  26. J.-A. Sauvaud, P. Louarn, G. Fruit, et al., J. Geophys. Res. 109, AO1212 (2004).

  27. N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics (Academic, New York, 1973; Mir, Moscow, 1975).

    Google Scholar 

  28. T. Yamamoto, K. Shiokawa, and S. Kokubun, Geophys. Res. Lett. 21, 2875 (1994).

    ADS  Google Scholar 

  29. E. N. Parker, Spontaneous Current Sheets in Magnetic Fields (Oxford Univ. Press, New York, 1994).

    Google Scholar 

  30. V. A. Sergeev, R. C. Elphic, F. S. Mozer, et al., Planet. Space Sci. 40, 1551 (1992).

    Article  ADS  Google Scholar 

  31. A. J. Klimas, J. A. Valdivia, D. Vassiliadis, et al., J. Geophys. Res. 105, 18765 (2000).

    Google Scholar 

  32. W. Liu, J. Geophys. Res. 106(A1), 289 (2001).

    Article  ADS  Google Scholar 

  33. T. Nagai, I. Shinohara, M. Fujimoto, et al., J. Geophys. Res. 106, 25929 (2001).

  34. K. V. Chukbar, Zh. Éksp. Teor. Fiz. 108, 1875 (1995) [JETP 81, 1025 (1995)].

    Google Scholar 

  35. G. M. Batanov, V. E. Bening, V. Yu. Korolev, et al., Pis’ma Zh. Éksp. Teor. Fiz. 73, 143 (2001) [JETP Lett. 73, 126 (2001)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 80, No. 10, 2004, pp. 771–783.

Original Russian Text Copyright © 2004 by Zeleny\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\), Grigorenko, Fedorov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zelenyi, L.M., Grigorenko, E.E. & Fedorov, A.O. Spatial-temporal ion structures in the earth’s magnetotail: Beamlets as a result of nonadiabatic impulse acceleration of the plasma. Jetp Lett. 80, 663–673 (2004). https://doi.org/10.1134/1.1857276

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1857276

PACS numbers

Navigation