Skip to main content
Log in

Instanton paths for the problem of coherent quantum tunneling in small ferromagnetic particles

  • Solids
  • Electronic Properties
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

It is shown that the problem of instantons in ferromagnetic materials in a large-spin model is reduced to an exactly integrable dynamical system with a finite number of variables. For a rather wide class of models, there exists a continuum of instanton paths that form a one-parameter family of paths with essentially different shapes but with the same value of the Euclidean action. On the basis of the formalism developed, exact instanton solutions are constructed that describe macroscopic quantum tunneling for a small ferromagnetic particle with uniaxial or biaxial quadratic anisotropy in the presence of a magnetic field applied perpendicularly to the easy axis. These solutions are valid for any relations between the anisotropy parameters and for any magnitude of the magnetic field and its direction in the base plane. Based on the solutions obtained, the principles of macroscopic quantum tunneling in high-spin-molecule-type magnetic particles are described. Tunneling regimes of two types are obtained: (1) regimes that are characterized by destructive interference of instanton trajectories and oscillatory dependence of the transition probability on the magnitude of the magnetic field and (2) regimes in which all instantons have the same purely real value of the Euclidean action and there is no destructive interference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Quantum Tunneling of Magnetization, Ed. by L. Gunter and B. Barbara (Kluwer Academic, Dordrecht, 1995), NATO ASI Ser., Ser. E, Vol. 301.

    Google Scholar 

  2. E. M. Chudnovsky and J. Tejada, Macroscopic Quantum Tunneling of the Magnetic Moment (Cambridge Univ. Press, Cambridge, 1998).

    Google Scholar 

  3. L. N. Leuenberger and D. Loss, Nature 410, 789 (2001).

    Article  ADS  Google Scholar 

  4. W. Wernsdorfer, N. Aliaga-Alcalde, D. N. Hendrickson, and G. Christou, Nature 416, 406 (2002).

    Article  ADS  Google Scholar 

  5. D. Loss, D. P. DiVincenzo, and G. Grinstein, Phys. Rev. Lett. 69, 3232 (1992).

    ADS  Google Scholar 

  6. J. von Delft and C. L. Henley, Phys. Rev. Lett. 69, 3236 (1992).

    ADS  Google Scholar 

  7. A. Garg, Europhys. Lett. 22, 205 (1993).

    ADS  Google Scholar 

  8. M. Enz and R. Schilling, J. Phys. C 19, L711 (1986).

    Article  ADS  Google Scholar 

  9. J. L. van Hemmen and A. Sütö, Physica B (Amsterdam) 141, 37 (1986).

    Google Scholar 

  10. E. M. Chudnovsky and L. Gunther, Phys. Rev. Lett. 60, 661 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  11. B. Barbara and E. M. Chudnovsky, Phys. Lett. A 145, 205 (1990).

    Article  ADS  Google Scholar 

  12. I. V. Krive and O. B. Zaslavskii, J. Phys.: Condens. Matter 2, 9457 (1990).

    Article  ADS  Google Scholar 

  13. V.Y. Golyshev and A. F. Popkov, Europhys. Lett. 29, 327 (1995).

    Google Scholar 

  14. E. M. Chudnovsky, J. Magn. Magn. Mater. 140–144, 1821 (1995).

    Google Scholar 

  15. D. D. Awschalom, J. F. Smyth, G. Grinstein, et al., Phys. Rev. Lett. 68, 3092 (1992).

    Article  ADS  Google Scholar 

  16. W. Wernsdorfer, Adv. Chem. Phys. 118, 99 (2001).

    Google Scholar 

  17. S. M. J. Aubin, N. R. Dilley, M. B. Wemple, et al., J. Am. Chem. Soc. 120, 839 (1998).

    Google Scholar 

  18. G. Christou, D. Gatteschi, D. N. Hendrickson, and R. Sessoli, MRS Bull. 25, 66 (2000).

    Google Scholar 

  19. R. S. Edvards, S. Hill, S. Bhaduri, et al., Polyhedron 22, 1911 (2003).

    Google Scholar 

  20. J. R. Friedman, M. P. Sarachik, J. Tejada, and R. Ziolo, Phys. Rev. Lett. 76, 3830 (1996).

    Article  ADS  Google Scholar 

  21. L. Thomas, F. Lionti, R. Ballou, et al., Nature 383, 145 (1996).

    Article  ADS  Google Scholar 

  22. C. Sangregorio, T. Ohm, C. Paulsen, et al., Phys. Rev. Lett. 78, 4645 (1997).

    Article  ADS  Google Scholar 

  23. S. M. J. Aubin, N. R. Dilley, M. W. Wemple, et al., J. Am. Chem. Soc. 120, 839 (1998).

    Google Scholar 

  24. W. Wernsdorfer and R. Sessoli, Science 284, 133 (1999).

    Article  ADS  Google Scholar 

  25. W. Wernsdorfer, M. Soler, G. Christou, and D. N. Hendrickson, J. Appl. Phys. 91, 7164 (2002).

    Article  ADS  Google Scholar 

  26. W. Wernsdorfer, S. Bhaduri, C. Boskovic, et al., Phys. Rev. B 65, 180403(R) (2002).

  27. E. Kececioglu and A. Garg, Phys. Rev. Lett. 88, 237205 (2002); Phys. Rev. B 67, 054406 (2003).

    Google Scholar 

  28. E. M. Chudnovsky and X. Martines Hidalgo, Europhys. Lett. 50, 395 (2000).

    Article  ADS  Google Scholar 

  29. A. I. Wainshtein, V. I. Zakharov, V. A. Novikov, and M. A. Shifman, Usp. Fiz. Nauk 136, 553 (1982) [Sov. Phys. Usp. 25, 195 (1982)].

    Google Scholar 

  30. E. Fradkin, Field Theories of Condensed Matter Systems (Addison-Wesley, Redwood City, CA, 1991), Frontiers in Physics, Vol. 82.

    Google Scholar 

  31. V. M. Eleonskii and N. E. Kulagin, Zh. Éksp. Teor. Fiz. 84, 616 (1983) [Sov. Phys. JETP 57, 356 (1983)]; 93, 1436 (1987) [Sov. Phys. JETP 66, 819 (1987)]; V. M. Eleonskii, N. N. Kirova, and N. E. Kulagin, Zh. Éksp. Teor. Fiz. 77, 409 (1979) [Sov. Phys. JETP 50, 209 (1979)].

    MathSciNet  Google Scholar 

  32. B. A. Ivanov and V. E. Kireev, Zh. Éksp. Teor. Fiz. 121, 320 (2002) [JETP 94, 270 (2002)].

    Google Scholar 

  33. R. Lu, J. L. Zhu, Y. Zhou, and B. L. Gu, Phys. Rev. B 62, 11661 (2000).

  34. E. A. Kochetov, J. Phys. A: Math. Gen. 31, 4473 (1998); M. Stone, K.-S. Park, and A. Garg, J. Math. Phys. 41, 8025 (2000); A. Garg, E. A. Kochetov, K.-S. Park, and M. Stone, J. Math. Phys. 44, 48 (2003).

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 126, No. 6, 2004, pp. 1479–1495.

Original Russian Text Copyright © 2004 by Ivanov, Kulagin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, B.A., Kulagin, N.E. Instanton paths for the problem of coherent quantum tunneling in small ferromagnetic particles. J. Exp. Theor. Phys. 99, 1291–1306 (2004). https://doi.org/10.1134/1.1854816

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1854816

Keywords

Navigation