Skip to main content
Log in

Effect of electron-electron interaction on spin relaxation of charge carriers in semiconductors

  • Solids
  • Electronic Properties
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

An analysis of spin dynamics is presented for semiconductor systems without inversion symmetry that exhibit spin splitting. It is shown that electron-electron interaction reduces the rate of the Dyakonov-Perel (precession) mechanism of spin relaxation both via spin mixing in the momentum space and via the Hartree-Fock exchange interaction in spin-polarized electron gas. The change in the Hartree-Fock contribution with increasing nonequilibrium spin polarization is analyzed. Theoretical predictions are compared with experimental results on spin dynamics in GaAs/AlGaAs-based quantum-well structures. The effect of electron-electron collisions is examined not only for two-dimensional electron gas in a quantum well, but also for electron gas in a bulk semiconductor and a quantum wire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Das Sarma, J. Fabian, Zuedong Hu, et al., Solid State Commun. 119, 207 (2001).

    Google Scholar 

  2. M. Oestreich, M. Bender, J. Hübner, et al., Semicond. Sci. Technol. 17, 285 (2002).

    Article  ADS  Google Scholar 

  3. Semiconductor Spintronics and Quantum Computation, Ed. by D. D. Awschalom, D. Loss, and N. Samarth (Springer, Berlin, 2002).

    Google Scholar 

  4. V. F. Motsnyi, V. I. Safarov, P. van Dorpe, et al., J. Supercond.: Incorp. Novel Magn. 16, 671 (2003).

    Google Scholar 

  5. M. I. Dyakonov, cond-mat/0401369.

  6. E. L. Ivchenko and G. E. Pikus, Superlattices and Other Heterostructures: Symmetry and Optical Phenomena (Springer, Berlin, 1995), Springer Ser. Solid-State Sci., Vol. 110.

    Google Scholar 

  7. Pil Hun Song and K. W. Kim, Phys. Rev. B 66, 035207 (2002).

  8. N. S. Averkiev, L. E. Golub, and M. Willander, J. Phys.: Condens. Matter 14, 271 (2002).

    Article  ADS  Google Scholar 

  9. M. I. D’yakonov and V. I. Perel’, Fiz. Tverd. Tela (Leningrad) 13, 3581 (1971) [Sov. Phys. Solid State 13, 3023 (1971)].

    Google Scholar 

  10. M. I. D’yakonov and V. Yu. Kachorovskii, Fiz. Tekh. Poluprovodn. (Leningrad) 20, 178 (1986) [Sov. Phys. Semicond. 20, 110 (1986)].

    Google Scholar 

  11. E. L. Ivchenko, P. S. Kop’ev, V. P. Kochereshko, et al., Pis’ma Zh. Éksp. Teor. Fiz. 47, 407 (1988) [JETP Lett. 47, 486 (1988)].

    ADS  Google Scholar 

  12. R. S. Britton, T. Grevatt, A. Malinowski, et al., Appl. Phys. Lett. 73, 2140 (1998).

    Article  ADS  Google Scholar 

  13. Y. Ohno, R. Terauchi, T. Adachi, et al., Phys. Rev. Lett. 83, 4196 (1999).

    Article  ADS  Google Scholar 

  14. A. Tackeuchi, T. Kuroda, S. Muto, et al., Jpn. J. Appl. Phys. 38, 4680 (1999).

    Article  Google Scholar 

  15. K. C. Hall, S. W. Leonard, H. M. van Driel, et al., Appl. Phys. Lett. 75, 4156 (1999).

    Google Scholar 

  16. M. W. Wu and H. Metiu, Phys. Rev. B 61, 2945 (2000).

    ADS  Google Scholar 

  17. M. W. Wu and C. Z. Ning, Phys. Status Solidi B 222, 523 (2000).

    ADS  Google Scholar 

  18. W. H. Lau, J. T. Olesberg, and M. E. Flatté, Phys. Rev. B 64, 161301 (2001).

    Google Scholar 

  19. M. W. Wu, J. Phys. Soc. Jpn. 70, 2195 (2001).

    Google Scholar 

  20. M. W. Wu and M. Kuwata-Gonokami, Solid State Commun. 121, 509 (2002).

    Article  Google Scholar 

  21. J. Kainz, U. Rössler, and R. Winkler, Phys. Rev. B 68, 075322 (2003).

    Google Scholar 

  22. M. M. Glazov and E. L. Ivchenko, Pis’ma Zh. Éksp. Teor. Fiz. 75, 476 (2002) [JETP Lett. 75, 403 (2002)].

    Google Scholar 

  23. E. L. Ivchenko, Fiz. Tverd. Tela (Leningrad) 15, 1566 (1973) [Sov. Phys. Solid State 15, 893 (1973)].

    Google Scholar 

  24. M. A. Brand, A. Malinowski, O. Z. Karimov, et al., Phys. Rev. Lett. 89, 236601 (2002).

    Google Scholar 

  25. M. M. Glazov, Fiz. Tverd. Tela (St. Petersburg) 45, 1108 (2003) [Phys. Solid State 45, 1162 (2003)].

    Google Scholar 

  26. M. M. Glazov and E. L. Ivchenko, J. Supercond.: Incorp. Novel Magn. 16, 735 (2003).

    Google Scholar 

  27. L. D. Landau, Zh. Éksp. Teor. Fiz. 7, 203 (1937).

    MATH  Google Scholar 

  28. M. M. Glazov and E. L. Ivchenko, in Optical Properties of 2D Systems with Interacting Electrons, Ed. by W. J. Ossau and R. Suris (Kluwer Academic, Dordrecht, 2003), p. 181.

    Google Scholar 

  29. M. Q. Weng and M. W. Wu, Phys. Rev. B 68, 75312 (2003); Phys. Status Solidi B 239, 121 (2003).

  30. M. M. Glazov, E. L. Ivchenko, M. A. Brand, et al., in Proceedings of 11th International Symposium on Nanostructures: Physics and Technology (St. Petersburg, 2003), p. 273; cond-mat/0305260.

  31. M. Q. Weng and M. W. Wu, J. Phys.: Condens. Matter 15, 5563 (2003).

    Article  ADS  Google Scholar 

  32. G. E. Pikus and A. N. Titkov, in Optical Orientation, Ed. by F. Meier and B. P. Zakharchenya (North-Holland, Amsterdam, 1984; Nauka, Leningrad, 1989).

  33. T. Nishimura, Xue-Lun Wang, M. Ogura, et al., Jpn. J. Appl. Phys. 38, L941 (1999).

    Article  Google Scholar 

  34. M. Governale and U. Zülicke, Phys. Rev. B 66, 073311 (2002).

    Google Scholar 

  35. E. A. de Andrada e Silva and G. C. La Rocca, Phys. Rev. B 67, 165318 (2003).

  36. F. Stern, Phys. Rev. Lett. 18, 546 (1967).

    Article  ADS  Google Scholar 

  37. S. É. Esipov and I. B. Levinson, Pis’ma Zh. Éksp. Teor. Fiz. 42, 193 (1985) [JETP Lett. 42, 239 (1985)].

    Google Scholar 

  38. S. É. Esipov and I. B. Levinson, Zh. Éksp. Teor. Fiz. 90, 330 (1986) [Sov. Phys. JETP 63, 191 (1986)].

    Google Scholar 

  39. C. Hodges, H. Smith, and J. W. Wilkins, Phys. Rev. B 4, 302 (1971).

    Article  ADS  Google Scholar 

  40. G. F. Giuliani and J. J. Quinn, Phys. Rev. B 26, 4421 (1982).

    ADS  Google Scholar 

  41. T. Jungwirth and A. H. MacDonald, Phys. Rev. B 53, 7403 (1996).

    ADS  Google Scholar 

  42. Lian Zheng and S. Das Sarma, Phys. Rev. B 53, 9964 (1996).

    ADS  Google Scholar 

  43. R. N. Gurzhi, A. N. Kalinenko, and A. I. Kopeliovich, Phys. Rev. B 52, 4744 (1995).

    Article  ADS  Google Scholar 

  44. Ben Yu Kuang Hu and K. Flensberg, Phys. Rev. B 53, 10072 (1996).

  45. V. N. Gridnev, Pis’ma Zh. Éksp. Teor. Fiz. 74, 417 (2001) [JETP Lett. 74, 380 (2001)].

    Google Scholar 

  46. J. F. Janak, Phys. Rev. 178, 1416 (1969).

    Article  ADS  Google Scholar 

  47. Guang-Hong Chen and M. E. Raikh, Phys. Rev. B 60, 4826 (1999).

    ADS  Google Scholar 

  48. V. F. Gantmakher and I. B. Levinson, Scattering of Carriers in Metals and Semiconductors (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  49. F. Prengel and E. Schöll, Phys. Rev. B 59, 5806 (1999).

    Article  ADS  Google Scholar 

  50. A. Gold and A. Ghazali, Phys. Rev. B 41, 7626 (1990).

    ADS  Google Scholar 

  51. A. V. Moroz, K. V. Samokin, and C. H. W. Barnes, Phys. Rev. Lett. 84, 4164 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 126, No. 6, 2004, pp. 1465–1478.

Original Russian Text Copyright © 2004 by Glazov, Ivchenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glazov, M.M., Ivchenko, E.L. Effect of electron-electron interaction on spin relaxation of charge carriers in semiconductors. J. Exp. Theor. Phys. 99, 1279–1290 (2004). https://doi.org/10.1134/1.1854815

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1854815

Keywords

Navigation