Skip to main content
Log in

Effect of purification on the electron structure and field emission characteristics of a carbonaceous material containing single-wall carbon nanotubes

  • Solids
  • Electronic Properties
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A carbonaceous material containing single-wall carbon nanotubes (SWNTs) has been synthesized by arc-discharge evaporation of graphite with a catalytic additive of nickel and cobalt powders. The synthesized SWNTs were purified from an amorphous carbon component (soot) and the catalyst particles by boiling in nitric acid. A comparison of the X-ray fluorescence spectra measured before and after this treatment showed that acid etching significantly decreased the content of soot in the material. The material enriched with SWNTs is characterized by a reduced threshold for the appearance of the field emission current, which is explained by a decrease in the screening effect of soot. The current-voltage characteristics of SWNTs exhibit a hysteresis, which is suggested to be due to the adsorption of molecules and radicals on the surface and at the ends of carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, New York, 1996).

    Google Scholar 

  2. A. G. Rinzler, J. H. Hafner, P. Nikolaev, et al., Science 269, 1550 (1995).

    ADS  Google Scholar 

  3. G. Zhou, W. Duan, and B. Gu, Appl. Phys. Lett. 79, 836 (2001).

    ADS  Google Scholar 

  4. D. Lovall, M. Buss, E. Graugnard, et al., Phys. Rev. B 61, 5683 (2000).

    Article  ADS  Google Scholar 

  5. A. Modi, N. Koratkar, E. Lass, et al., Nature 424, 171 (2003).

    Article  ADS  Google Scholar 

  6. H. Kataura, Y. Kumazawa, Y. Manwa, et al., Carbon 38, 1691 (2000).

    Article  Google Scholar 

  7. H. Kanzow, Ch. Lenski, and A. Ding, Phys. Rev. B 63, 125402 (2001).

  8. D. W. Mawhinney, V. Naumenko, A. Kuznetsova, et al., Chem. Phys. Lett. 324, 213 (2000).

    Article  Google Scholar 

  9. Ch.-M. Yang, K. Kaneko, M. Yudasaka, and S. Iijima, Physica B (Amsterdam) 323, 140 (2002).

    ADS  Google Scholar 

  10. Ch. Kim, K. Seo, and B. Kim, Phys. Rev. B 68, 115403 (2003).

  11. L. G. Bulusheva, A. V. Okotrub, A. V. Gusel’nikov, et al., in Molecular Nanostructures, Ed. by H. Kuzmany, J. Fink, M. Mehring, and S. Roth (AIP, Melville, N.Y., 2003); AIP Conf. Proc. 685, 108 (2003).

    Google Scholar 

  12. A. V. Okotrub, Yu. V. Shevtsov, L. I. Nasonova, et al., Prib. Tekh. Éksp., No. 1, 193 (1995).

  13. A. V. Okotrub, Yu. V. Shevtsov, L. I. Nasonova, et al., Neorg. Mater. 32, 974 (1996).

    Google Scholar 

  14. A. V. Okotrub, G. S. Belikova, T. N. Turskaya, and L. N. Mazalov, in Applications of Synchrotron Radiation Techniques to Materials Science IV, Ed. by S. M. Mini, S. R. Stock, D. L. Perry, and L. J. Terminello; Mater. Res. Soc. Symp. Proc. 524, 161 (1997).

  15. A. V. Okotrub and L. G. Bulusheva, Fullerene Sci. Technol. 6, 405 (1998).

    Google Scholar 

  16. Chr. Beyreuther, R. Hierl, and G. Wiech, Ber. Bunsen-Gess. Phys. Chem. 79, 1081 (1895).

    Google Scholar 

  17. A. V. Okotrub, L. G. Bulusheva, A. I. Romanenko, et al., Appl. Phys. A 71, 481 (2001).

    ADS  Google Scholar 

  18. S. Eisebitt, A. Karl, W. Eberhardt, et al., Appl. Phys. A 67, 89 (1998).

    Article  ADS  Google Scholar 

  19. É. Z. Kurmaev, in X-ray and Electron Spectroscopy of Solids, Ed. by V. N. Antonov (Naukova Dumka, Kiev, 1993), p. 1 [in Russian].

    Google Scholar 

  20. L. J. Dunne, A. K. Sarkar, H. W. Kroto, et al., J. Phys.: Condens. Matter 8, 2127 (1996).

    Article  ADS  Google Scholar 

  21. R. J. Lagow, J. J. Kampa, H.-Ch. Wei, et al., Science 267, 362 (1995).

    ADS  Google Scholar 

  22. M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc. 99, 4899 (1977).

    Google Scholar 

  23. Y.-K. Kwon, S. Saito, and D. Tomanek, Phys. Rev. B 58, R13314 (1998).

  24. R. B. Heimann, J. Kleiman, and N. M. Salansky, Nature 306, 164 (1983).

    Article  Google Scholar 

  25. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    ADS  Google Scholar 

  26. Jaguar 3. 5 (Schrödinger, Portland, OR, 1998).

  27. L. G. Bulusheva, A. V. Okotrub, D. A. Romanov, and D. Tomanek, Phys. Low-Dimens. Semicond. Struct., No. 3–4, 107 (1998).

  28. A. V. Okotrub, L. G. Bulusheva, V. L. Kuznetsov, et al., J. Phys. Chem. A 105, 9781 (2001).

    Article  Google Scholar 

  29. R. H. Fowler and L. W. Nordheim, Proc. R. Soc. London 119, 173 (1928).

    ADS  Google Scholar 

  30. W. Zhu, C. Bower, O. Zhou, et al., Appl. Phys. Lett. 75, 873 (1999).

    ADS  Google Scholar 

  31. F. H. Read and N. J. Bowring, Nucl. Instrum. Methods Phys. Res. A 519, 305 (2004).

    ADS  Google Scholar 

  32. P. G. Collins and A. Zettl, Phys. Rev. B 55, 9391 (1997).

    Article  ADS  Google Scholar 

  33. M. Grujicic, G. Cao, and B. Gersten, Appl. Surf. Sci. 206, 167 (2003).

    Article  Google Scholar 

  34. K. A. Dean and B. R. Chalamala, Appl. Phys. Lett. 76, 375 (2000).

    Article  ADS  Google Scholar 

  35. W. I. Milne, K. B. K. Teo, S. B. Lansley, et al., in Molecular Nanostructures, Ed. by H. Kuzmany, J. Fink, M. Mehring, and S. Roth (AIP, Melville, N.Y., 2003); AIP Conf. Proc. 685, 605 (2003).

    Google Scholar 

  36. G. Zhou, W. Duan, B. Gu, and Y. Kawazoe, J. Chem. Phys. 116, 2284 (2002).

    ADS  Google Scholar 

  37. S. T. Purcell, P. Vicent, C. Journet, and V. T. Binh, Phys. Rev. Lett. 88, 105502 (2002).

    Google Scholar 

  38. J.-M. Bonard, Ch. Klinke, K. A. Dean, and B. F. Coll, Phys. Rev. B 67, 115406 (2003).

    Google Scholar 

  39. J. P. Sun, Z. H. Zhang, S. M. Hou, et al., Appl. Phys. A 75, 479 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 126, No. 6, 2004, pp. 1425–1434.

Original Russian Text Copyright © 2004 by Okotrub, Bulusheva, Gusel’nikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okotrub, A.V., Bulusheva, L.G. & Gusel’nikov, A.V. Effect of purification on the electron structure and field emission characteristics of a carbonaceous material containing single-wall carbon nanotubes. J. Exp. Theor. Phys. 99, 1244–1252 (2004). https://doi.org/10.1134/1.1854812

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1854812

Keywords

Navigation