Journal of Experimental and Theoretical Physics

, Volume 99, Issue 6, pp 1233–1243 | Cite as

Spin relaxation of quadrupole nuclei in paramagnetic and magnetically ordered insulators

  • N. P. Fokina
  • M. O. Elizbarashvili
Solids Electronic Properties


The longitudinal and transverse spin relaxation through a (generally anisotropic) electron-nucleus interaction in paramagnetic and magnetically ordered insulators is theoretically studied for nuclei with a resolved quadrupole structure. Expressions are derived for the relaxation rates of both the transverse nuclear magnetization components when individual transitions are excited in the quadrupole structure and the total longitudinal nuclear magnetization component. These expressions are reduced to a form that contains the Fourier transforms of the time correlation functions only for the electron spins. Given the specific form of these correlation functions corresponding to different phase states of the electron spins and different origins of their fluctuations, the temperature dependences of the nuclear relaxation rates are ascertained in various cases, including those for dipole and isotropic hyperfine interactions. Calculations are performed for arbitrary electron and half-integer nuclear spins by taking into account the possible quadrupole splitting of the NMR spectrum without any restriction on the smallness of the ratio ℏω s/kBTs is the resonance frequency of the electron spins). The derived expressions are compared with available experimental data on the longitudinal and transverse nuclear relaxation in colossal-magnetoresistance lanthanum manganites in the part of their phase diagram where the corresponding samples are either paramagnetic or magnetically ordered insulators and near the points of transition to an ordered state. Interpretations alternative to the existing ones are offered.


Lanthanum Relaxation Rate Manganite Hyperfine Interaction Quadrupole Splitting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. V. Aleksandrov, Theory of Magnetic Relaxation. Relaxation in Liquids and Solid Nonmetallic Paramagnets (Nauka, Moscow, 1975), Chap. III [in Russian].Google Scholar
  2. 2.
    J. M. D. Coey, M. Viret, and S. von Molnar, Adv. Phys. 48, 167 (1999).CrossRefADSGoogle Scholar
  3. 3.
    E. L. Nagaev, Phys. Rep. 346, 387 (2001).CrossRefADSGoogle Scholar
  4. 4.
    E. Dagotto, J. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2001).CrossRefADSGoogle Scholar
  5. 5.
    G. Allodi, R. De Renzi, G. Guidi, et al., Phys. Rev. B 56, 6036 (1997).CrossRefADSGoogle Scholar
  6. 6.
    G. Allodi, R. De Renzi, and G. Guidi, Phys. Rev. B 57, 1024 (1998).CrossRefADSGoogle Scholar
  7. 7.
    K. E. Sakaie, C. P. Slichter, P. Lin, et al., Phys. Rev. B 59, 9382 (1999).CrossRefADSGoogle Scholar
  8. 8.
    K. Kumagai, A. Iwai, Y. Tomioka, et al., Phys. Rev. B 59, 97 (1999).CrossRefADSGoogle Scholar
  9. 9.
    G. Papavassiliou, M. Fardis, M. Belesi, et al., Phys. Rev. B 59, 6390 (1999).CrossRefADSGoogle Scholar
  10. 10.
    G. Papavassiliou, M. Fardis, M. Belesi, et al., Phys. Rev. Lett. 84, 761 (2000).ADSGoogle Scholar
  11. 11.
    G. Papavassiliou, M. Belesi, and D. Dimitropoulos, Phys. Rev. Lett. 87, 177204 (2001).Google Scholar
  12. 12.
    G. Allodi, M. Gestelli Guidi, R. De Renzi, et al., Phys. Rev. Lett. 87, 127206 (2001).Google Scholar
  13. 13.
    M. M. Savosta, V. I. Kamenev, V. A. Borodin, et al., Phys. Rev. B 67, 094403 (2003).Google Scholar
  14. 14.
    A. Urushibara, Y. Morimoto, T. Arima, et al., Phys. Rev. B 51, 14103 (1995).Google Scholar
  15. 15.
    A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961; Inostrannaya Literatura, Moscow, 1963).Google Scholar
  16. 16.
    E. A. Turov and M. P. Petrov, Nuclear Magnetic Resonance in Ferro-and Antiferromagnets (Nauka, Moscow, 1969; Wiley, New York, 1972), Chap. V.Google Scholar
  17. 17.
    R. Kubo and K. Tomita, J. Phys. Soc. Jpn. 9, 888 (1954).Google Scholar
  18. 18.
    T. Moriya, Prog. Theor. Phys. 16, 23, 641 (1956).Google Scholar
  19. 19.
    T. Rega, J. Phys.: Condens. Matter 3, 1871 (1991).CrossRefADSGoogle Scholar
  20. 20.
    W. W. Simmons, W. J. O’Sullivan, and W. A. Robinson, Phys. Rev. 127, 1168 (1962).CrossRefADSGoogle Scholar
  21. 21.
    A. Narath, Phys. Rev. 162, 320 (1967).CrossRefADSGoogle Scholar
  22. 22.
    N. Noginova, E. Arthur, T. Weaver, et al., Phys. Rev. B 69, 024406 (2004).Google Scholar
  23. 23.
    T. Plefka, Phys. Status Solidi B 55, 129 (1973).Google Scholar
  24. 24.
    C. P. Slichter, Principles of Magnetic Resonance, 3rd ed. (Springer, Berlin, 1990; Mir, Moscow, 1967), Chap. V.Google Scholar
  25. 25.
    R. H. Heffner, L. P. Le, M. F. Hundley, et al., Phys. Rev. Lett. 77, 715 (1996).CrossRefGoogle Scholar
  26. 26.
    S. E. Lofland, P. Kim, P. Dahiroc, et al., Phys. Rev. Lett. 79, 476 (1997).Google Scholar
  27. 27.
    J. B. Goodenough, A. Wold, R. J. Arnott, and N. Meniuk, Phys. Rev. 124, 373 (1961).CrossRefADSGoogle Scholar
  28. 28.
    S. Yunoki, A. Moreo, and E. Dagotto, Phys. Rev. Lett. 81, 5612 (1998).CrossRefADSGoogle Scholar
  29. 29.
    Y. Endoh, K. Hirota, S. Ishihara, et al., Phys. Rev. Lett. 82, 4328 (1999).CrossRefADSGoogle Scholar
  30. 30.
    M. Hennion, F. Moussa, J. Rodriguez-Carvajal, et al., Phys. Rev. B 56, R497 (1997).CrossRefADSGoogle Scholar
  31. 31.
    J. W. Lynn, R. W. Erwin, J. A. Borchers, et al., Phys. Rev. Lett. 76, 4046 (1996).CrossRefADSGoogle Scholar
  32. 32.
    T. Moriya, Prog. Theor. Phys. 28, 371 (1962).CrossRefADSGoogle Scholar
  33. 33.
    S. Chakravarty, M. P. Gefland, P. Kopietz, et al., Phys. Rev. B 43, 2796 (1991).CrossRefADSGoogle Scholar
  34. 34.
    M. A. H. McClausen and I. S. Mackenzie, Adv. Phys. 28, 307 (1979).ADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2004

Authors and Affiliations

  • N. P. Fokina
    • 1
  • M. O. Elizbarashvili
    • 1
  1. 1.Tbilisi State UniversityTbilisiGeorgia

Personalised recommendations