Skip to main content
Log in

Andreev states and shot noise in bicrystal junctions of cuprate superconductors

  • Solids
  • Electronic Properties
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Experimentally observed features of the electrical and noise characteristics of bicrystal junctions of cuprate superconductors, such as linearity of the critical current density versus square root of the junction transparency and increase in the spectral density of shot noise for small bias voltages (below the superconducting gap), indicate that the superconducting current in cuprate bicrystal junctions is determined by the passage of quasi-particles through a potential barrier at the superconductor boundaries. This process involves bound states appearing as a result of multiple Andreev reflections in superconductors with dominant wavefunction components of the d x 2 y 2 symmetry type. At the same time, interpretation of the experimental current-phase and current-magnetic field curves requires that the character of faceting at the bicrystal junctions would be also taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. O. Kulik and I. K. Yanson, in Josephson Effect in Superconducting Tunnel Structures (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  2. I. O. Kulik, Zh. Éksp. Teor. Fiz. 57, 1745 (1969) [Sov. Phys. JETP 30, 944 (1970)].

    Google Scholar 

  3. A. Furusaki and M. Tsukada, Phys. Rev. B 43, 10164 (1991).

    Google Scholar 

  4. C.-R. Hu, Phys. Rev. Lett. 72, 1526 (1994).

    ADS  Google Scholar 

  5. R. A. Riedel and P. F. Bagwell, Phys. Rev. B 57, 6084 (1998).

    Article  ADS  Google Scholar 

  6. Yu. S. Barash, Phys. Rev. B 61, 678 (2000).

    ADS  Google Scholar 

  7. C. W. Benaker, Phys. Rev. Lett. 67, 3836 (1991).

    ADS  Google Scholar 

  8. K. K. Likharev, Rev. Mod. Phys. 51, 101 (1979).

    Article  ADS  Google Scholar 

  9. Y. Tanaka and S. Kashiwaya, Phys. Rev. B 53, 11957 (1996).

    Google Scholar 

  10. Yu. S. Barash, H. Burkhardt, and D. Rainer, Phys. Rev. Lett. 77, 4070 (1996).

    Article  ADS  Google Scholar 

  11. E. Il’ichev, M. Grajcar, R. Hlubina, et al., Phys. Rev. Lett. 86, 5369 (2001).

    ADS  Google Scholar 

  12. L. Alff, A. Beck, R. Gross, et al., Phys. Rev. B 58, 11197 (1998).

  13. G. A. Ovsyannikov, A. D. Mashtakov, I. V. Borisenko, and K. Y. Constantinian, J. Low Temp. Phys. 117, 605 (1999).

    Article  Google Scholar 

  14. A. D. Mashtakov, K. Y. Constantinian, G. A. Ovsyannikov, and E. A. Stepantsov, Pis’ma Zh. Tekh. Fiz. 25(7), 1 (1999) [Tech. Phys. Lett. 25, 249 (1999)].

    Google Scholar 

  15. E. V. Bezuglyi, E. N. Bratus’, V. S. Shumeiko, and G. Wendin, Phys. Rev. Lett. 83, 2050 (1999).

    Article  ADS  Google Scholar 

  16. Y. Naveh and D. V. Averin, Phys. Rev. Lett. 82, 4090 (1999).

    Article  ADS  Google Scholar 

  17. K. Y. Constantinian, G. A. Ovsyannikov, I. V. Borisenko, et al., IEEE Trans. Appl. Supercond. 13, 610 (2003).

    Article  Google Scholar 

  18. J. C. Cuevas and M. Fogelström, Phys. Rev. B 64, 104502 (2001); Phys. Rev. Lett. 89, 227003 (2002).

    Google Scholar 

  19. H. Hilgenkamp and J. Mannhart, Rev. Mod. Phys. 74, 485 (2002).

    Article  Google Scholar 

  20. M. Kawasaki, P. Chaudhari, and A. Gupta, Phys. Rev. Lett. 68, 1065 (1992).

    Article  ADS  Google Scholar 

  21. M. Covington, M. Aprili, E. Paraoanu, et al., Phys. Rev. Lett. 79, 277 (1997).

    ADS  Google Scholar 

  22. F. V. Komissinski, G. A. Ovsyannikov, Yu. V. Kislinskii, et al., Zh. Éksp. Teor. Fiz. 122, 1247 (2002) [JETP 95, 1074 (2002)].

    Google Scholar 

  23. T. Lofwander, V. S. Shumeiko, and G. Wendin, Supercond. Sci. Technol. 14, R53 (2001).

    ADS  Google Scholar 

  24. Z. G. Ivanov, E. A. Stepantsov, A. Y. Tzalenchuk, et al., IEEE Trans. Appl. Supercond. 3, 2925 (1993).

    Article  ADS  Google Scholar 

  25. H. Hilgenkamp, J. Mannhart, and B. Mayer, Phys. Rev. B 53, 14586 (1996).

    Google Scholar 

  26. L. J. Buchholtz, M. Palumbo, D. Rainer, and J. A. Sauls, J. Low Temp. Phys. 101, 10789 (1995).

    Google Scholar 

  27. M. B. Walker and P. Pairor, Physica C (Amsterdam) 341–348, 1523 (2000).

    Google Scholar 

  28. G. Wendin and V. S. Shumeiko, Phys. Rev. B 53, R6006 (1996).

  29. F. V. Komissinski, G. A. Ovsyannikov, and Z. G. Ivanov, Fiz. Tverd. Tela (St. Petersburg) 43, 769 (2001) [Phys. Solid State 43, 801 (2001)].

    Google Scholar 

  30. V. K. Kornev, I. I. Soloviev, N. V. Klenov, et al., IEEE Trans. Appl. Supercond. 13, 825 (2003).

    Article  Google Scholar 

  31. V. N. Gubankov, V. P. Koshelets, and G. A. Ovsyannikov, Zh. Éksp. Teor. Fiz. 71, 348 (1976) [Sov. Phys. JETP 44, 181 (1976)].

    Google Scholar 

  32. R. Kleiner, A. S. Katz, A. G. Sun, et al., Phys. Rev. Lett. 76, 2161 (1996).

    Article  ADS  Google Scholar 

  33. L. É. Amatuni, R. M. Martirosyan, and K. Y. Constantinian, Pis’ma Zh. Tekh. Fiz. 20(3), 86 (1994) [Tech. Phys. Lett. 20, 128 (1994)].

    Google Scholar 

  34. Y. Y. Divin, U. Poppe, K. Urban, et al., IEEE Trans. Appl. Supercond. 9, 3346 (1999).

    Article  Google Scholar 

  35. O. Harnack, M. Darula, S. Beuven, and H. Kohlstedt, Appl. Phys. Lett. 76, 1764 (2000).

    Article  ADS  Google Scholar 

  36. P. L. Richards and T.-M. Shen, Appl. Phys. Lett. 36, 480 (1980).

    Article  ADS  Google Scholar 

  37. Y. Blanter and M. Buttiker, Phys. Rep. 336, 1 (2000).

    Article  ADS  Google Scholar 

  38. P. Dieltman, H. G. Bukkems, T. M. Klapwijk, et al., Phys. Rev. Lett. 79, 3486 (1997).

    ADS  Google Scholar 

  39. K. Y. Constantinian, G. A. Ovsyannikov, I. V. Borisenko, et al., Supercond. Sci. Technol. 14, 1035 (2001).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 126, No. 6, 2004, pp. 1402–1412.

Original Russian Text Copyright © 2004 by Borisenko, Constantinian, Kislinski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\), Ovsyannikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borisenko, I.V., Constantinian, K.Y., Kislinskii, Y.V. et al. Andreev states and shot noise in bicrystal junctions of cuprate superconductors. J. Exp. Theor. Phys. 99, 1223–1232 (2004). https://doi.org/10.1134/1.1854810

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1854810

Keywords

Navigation