Skip to main content
Log in

A new allotropic form of carbon [C28]n based on fullerene C20 and cubic cluster C8 and Si and Ge analogs of this form: Computer simulation

  • Fullerenes and Atomic Clusters
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The structure of a new allotropic form of carbon [C28]n having a simple cubic lattice and space group \(Pm \bar 3\) is proposed. The geometrical parameters of the building block of such a hypothetic crystal are preliminarily determined from DFT-PBE calculations of the cluster C8 @(C20)8 and the polyhedral hydrocarbon molecule C8 @(C20H13)8, in which the centers of the cubic clusters C8 coincide with the centers of the cluster C8 @(C20)8 and of the molecule C8 @(C20H13)8, respectively, and dodecahedral C20 carbon cages are located at the vertices of a cube. The energy of dissociation of the cluster C8 @(C20)8 into a cubic cluster C8 and eight dodecahedral clusters C20 is calculated to be 1482 kcal/mol, and the energy of each C8-C20 bond is equal to 74.2 kcal/mol. The structure of the [C28]n crystal is refined using the DFT-PBE96/FLAPW method and optimized geometry. Calculations show that the crystal is a dielectric with an energy gap of 3.3 eV. The lattice parameter a of the crystal is equal to 5.6 Å, and its density is 3.0 g/cm3. The possible existence of analogous allotropic forms of elements Si and Ge is discussed. A method is proposed for designing a hypothetic allotropic form [C28]n from C20(CH3)8 molecules with T h symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. V. Stankevich, M. V. Nikerov, and D. A. Bochvar, Usp. Khim. 53(7), 1101 (1984).

    Google Scholar 

  2. A. T. Balaban, C. C. Rentia, and E. Ciupitu, Rev. Roum. Chem. 13(2), 231 (1968).

    Google Scholar 

  3. D. A. Bochvar and E. G. Gal’pern, Dokl. Akad. Nauk SSSR 209, 610 (1973) [Sov. Phys. Dokl. 18, 239 (1973)].

    Google Scholar 

  4. M. V. Nikerov, D. A. Bochvar, and I. V. Stankevich, Zh. Strukt. Khim. 23, 177 (1982).

    Google Scholar 

  5. V. V. Korshak, Yu. P. Kudryavtsev, and A. M. Sladkov, Vestn. Akad. Nauk SSSR 1, 70 (1978).

    Google Scholar 

  6. V. M. Mel’nichenko, Yu. I. Nikulin, and A. M. Sladkov, Dokl. Akad. Nauk SSSR 267, 1150 (1982).

    Google Scholar 

  7. R. Hoffmann, T. Hughbanks, M. Kertesz, and P. H. Bird, J. Am. Chem. Soc. 105, 4831 (1983).

    Google Scholar 

  8. F. Diedrich and Y. Rubin, Angew. Chem. Int. Ed. Engl. 39(9), 1101 (1992).

    Google Scholar 

  9. V. I. Sokolov and I. V. Stankevich, Usp. Khim. 62(5), 455 (1993).

    Google Scholar 

  10. I. V. Stankevich, Chem. Rev. 20, 1 (1994).

    Google Scholar 

  11. H. Prinzbach, A. Weller, P. Landerberger, F. Wahl, J. Wörth, L. T. Scott, M. Gelmont, D. Olevaro, and B. V. Issendorff, Nature 407, 60 (2000).

    Article  ADS  Google Scholar 

  12. L. A. Paquette, D. W. Balogh, R. Usha, and D. Koutz, Science 211, 575 (1981).

    ADS  Google Scholar 

  13. L. A. Paquette, R. J. Ternansky, D. W. Balogh, and G. J. Kentgen, J. Am. Chem. Soc. 105, 5446 (1983).

    Google Scholar 

  14. Y. Miyamoto and M. Saito, Phys. Rev. B 63, 161401(R) (2001).

  15. S. Okada, Y. Miyamoto, and M. Saito, Phys. Rev. B 64, 245405 (2001).

    Google Scholar 

  16. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  17. D. N. Laikov, Chem. Phys. Lett. 281, 151 (1997).

    Article  Google Scholar 

  18. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: the Art of Scientific Computing (Cambridge Univ. Press, Cambridge, MA, 1992).

    Google Scholar 

  19. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luits, Wien2k Userguide (Vienna Univ. of Technology, Vienna, 2001).

    Google Scholar 

  20. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luits, Wien2k (Vienna Univ. of Technology, Vienna, 2001).

    Google Scholar 

  21. T. Obwald, M. Keller, G. Janiak, M. Kolm, and H. Prinzbach, Tetrahedron Lett. 41, 1631 (2000).

    Google Scholar 

  22. A. L. Chistyakov and I. V. Stankevich, in Abstracts of 2nd International Conference on Carbon: Fundamental Problems of Science, Materials Science, and Technology (Mosk. Gos. Univ., Moscow, 2003), p. 221.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 47, No. 1, 2005, pp. 184–190.

Original Russian Text Copyright © 2005 by Chistyakov, Stankevich, Korlyukov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chistyakov, A.L., Stankevich, I.V. & Korlyukov, A.A. A new allotropic form of carbon [C28]n based on fullerene C20 and cubic cluster C8 and Si and Ge analogs of this form: Computer simulation. Phys. Solid State 47, 191–198 (2005). https://doi.org/10.1134/1.1853475

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1853475

Keywords

Navigation