Skip to main content
Log in

Solving the relativistic inverse scattering problem with allowance for inelasticity effects on the basis of N/D equations and application of the resulting solution to an analysis of nucleon-nucleon interaction

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

A manifestly Poincaré-invariant approach to solving the inverse scattering problem is developed with allowance for inelasticity effects. The equations of the N/D method are used as dynamical equations in this approach. Two versions of the approach are considered. In the first version (method A), the required equations are constructed on the basis of the maximal-analyticity principle, which constitutes the basis of dynamical S-matrix theory. In formulating the second version of equations (method B), it is assumed that a partial-wave scattering amplitude may develop dynamical singularities that violate the requirement of maximal analyticity. The dynamics of interaction components that violate maximal analyticity is described within the model of a nonlocal separable potential. The method is used to analyze nucleon-nucleon interaction in the 1 S 0 and 3 S 1 states. The results obtained by solving the inverse scattering problem for potential functions are compared with the predictions of the one-boson-exchange model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Weinberg, Nucl. Phys. B 363, 3 (1991).

    Article  ADS  Google Scholar 

  2. N. Kaiser, Phys. Rev. C 64, 057001 (2001).

    Google Scholar 

  3. D. I. D'yakonov and M. I. Éides, Pis'ma Zh. Éksp. Teor. Fiz. 38, 358 (1983) [JETP Lett. 38, 433 (1983)].

    Google Scholar 

  4. R. T. Cahill, Nucl. Phys. A 543, 63 (1992).

    ADS  Google Scholar 

  5. R. Machleidt and I. Slaus, J. Phys. G 27, 69 (2001).

    Article  ADS  Google Scholar 

  6. M. Lacombe, B. Loiseau, J. M. Richard, et al., Phys. Rev. D 12, 1495 (1975).

    Article  ADS  Google Scholar 

  7. R. A. Arndt, I. I. Strakovsky, and R. N. Workman, Phys. Rev. C 62, 034005 (2000); http://gwdac.phys.gwu.edu.

  8. M. Matsuda, Nucl. Phys. A 631, 436 (1998).

    ADS  Google Scholar 

  9. J. Nagata, H. Yoshino, and M. Matsuda, in Proceedings of the 9th International Symposium on Meson-Nucleon Physics and Structure of the Nucleon, Washington, USA, 2001, Ed. by H. Haberzettl and W. J. Briscoe; πN Newslett., No. 16, 376 (2002).

  10. K. Chadan and P. Sabatier, Inverse Problems in Quantum Scattering Theory (Springer, Heidelberg, 1997; Mir, Moscow, 1980).

    Google Scholar 

  11. M. Gell-Mann, M. L. Goldberger, and W. Thirring, Phys. Rev. 95, 1612 (1954).

    MathSciNet  ADS  Google Scholar 

  12. N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory of Quantum Fields, 4th ed. (Nauka, Moscow, 1984; Wiley, New York, 1980).

    Google Scholar 

  13. P. Collins and E. Squires, Regge Poles in Particle Physics (McGraw-Hill, New York, 1968; Mir, Moscow, 1971).

    Google Scholar 

  14. J. M. Greben and Yu. A. Simonov, Phys. Rev. C 18, 642 (1978).

    Article  ADS  Google Scholar 

  15. V. E. Troitskii, Yad. Fiz. 29, 236 (1979) [Sov. J. Nucl. Phys. 29, 118 (1979)].

    Google Scholar 

  16. A. N. Safronov, Yad. Fiz. 50, 951 (1989) [Sov. J. Nucl. Phys. 50, 593 (1989)].

    Google Scholar 

  17. V. V. Anisovich, D. I. Melikhov, B. Ch. Metsch, and H. R. Petry, Yad. Fiz. 57, 331 (1994) [Phys. At. Nucl. 57, 312 (1994)].

    Google Scholar 

  18. L. D. Landau, Zh. Éksp. Teor. Fiz. 37, 62 (1959) [Sov. Phys. JETP 10, 45 (1959)].

    MATH  Google Scholar 

  19. R. E. Cutkosky, J. Math. Phys. 1, 429 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. P. Rudik and Yu. A. Simonov, Zh. Éksp. Teor. Fiz. 45, 1016 (1963) [Sov. Phys. JETP 18, 703 (1963)].

    Google Scholar 

  21. L. D. Blokhintsev and A. N. Safronov, Nucl. Phys. A 180, 363 (1972).

    MathSciNet  ADS  Google Scholar 

  22. M. Froissart, Nuovo Cimento 22, 191 (1961).

    MathSciNet  Google Scholar 

  23. G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).

    MathSciNet  ADS  Google Scholar 

  24. L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101, 453 (1956).

    Article  ADS  Google Scholar 

  25. V. De Alfaro and T. Regge, Potential Scattering (Amsterdam, 1965; Mir, Moscow, 1966).

  26. R. A. Arndt and L. D. Roper, Phys. Rev. D 25, 2011 (1982).

    Article  ADS  Google Scholar 

  27. A. Chodos, R. L. Jaffe, K. Johnson, et al., Phys. Rev. D 9, 3471 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  28. A. W. Thomas, S. Theberge, and G. A. Miller, Phys. Rev. D 24, 216 (1981).

    ADS  Google Scholar 

  29. R. L. Jaffe and F. E. Low, Phys. Rev. D 19, 2105 (1979).

    Article  ADS  Google Scholar 

  30. Yu. A. Simonov, Phys. Lett. B 107B, 1 (1981).

    MathSciNet  ADS  Google Scholar 

  31. A. N. Safronov, Fiz. Élem. Chastits At. Yadra 21, 1187 (1990) [Sov. J. Part. Nucl. 21, 505 (1990)].

    Google Scholar 

  32. A. N. Safronov, Izv. Akad. Nauk, Ser. Fiz. 66, 65 (2002).

    MathSciNet  Google Scholar 

  33. A. N. Safronov and A. A. Safronov, in Proceedings of the International Conference on the Properties of Excited Nuclear States and Mechanisms of Nuclear Reactions. LI Meeting on Nuclear Spectroscopy and Nuclear Structure, Sarov, Russia, 2001; Vopr. At. Nauki Tekh., Ser. Fiz. Yad. Reakt., No. 1–2, 32 (2002).

  34. O. Krehl, C. Hanhart, S. Krewald, and J. Speth, Phys. Rev. C 62, 025207 (2000).

    Google Scholar 

  35. H. V. von Geramb, K. A. Amos, H. Labes, and M. Sander, Phys. Rev. C 58, 1948 (1998).

    ADS  Google Scholar 

  36. A. Funk, H. V. von Geramb, and K. A. Amos, Phys. Rev. C 64, 054003 (2001).

    Google Scholar 

  37. V. G. Neudatchin, N. P. Yudin, Yu. L. Dorodnykh, and I. T. Obukhovsky, Phys. Rev. C 43, 2499 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Yadernaya Fizika, Vol. 67, No. 12, 2004, pp. 2269–2284.

Original Russian Text Copyright © 2004 by A.N. Safronov, A.A. Safronov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safronov, A.N., Safronov, A.A. Solving the relativistic inverse scattering problem with allowance for inelasticity effects on the basis of N/D equations and application of the resulting solution to an analysis of nucleon-nucleon interaction. Phys. Atom. Nuclei 67, 2245–2259 (2004). https://doi.org/10.1134/1.1842304

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1842304

Keywords

Navigation