Skip to main content
Log in

Equation of state in the quasi-classical approximation

  • Theoretical and Mathematical Physics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

An approximate equation of state is considered that contains a correction for electron-gas inhomogeneity in the exchange-correlation and kinetic energies in the quasi-classical approximation. The problem of finding the model parameters satisfying the condition P=0 has been solved for metals at a normal density. The results of numerical solution of the model equations are presented for degrees of compression. The values of the quasi-classical parameter determining the approximation accuracy are found. The results are illustrated by the dependences on the degree of compression plotted in the range ρ/ρ0=1–106 and by the spatial dependences. Our approach to construction of the equation of state provides for a quite simple but sufficiently accurate approach to the experimental values of the model parameters. Moreover, the proposed model gives much more self-consistent information as compared to conventional approximations. In particular, the ionicity is calculated for an increase in the density. The model equation can also be used instead of the well-known effective bound-electron potential approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Gambás, The Statistical Theory of Atoms and Its Applications (Die Statistische Theorie des Atoms und Ihre Anwendungen) (Springer-Verlag, Vienna, 1949; Inostrannaya Literatura, Moscow, 1951).

    Google Scholar 

  2. C. F. von Weizsacker, Z. Phys. 96, 431 (1935).

    Google Scholar 

  3. A. S. Kompaneets and E. S. Pavlovskii, Zh. Éksp. Teor. Fiz. 31(3), 115 (1956).

    Google Scholar 

  4. D. A. Kirzhnits, Zh. Éksp. Teor. Fiz. 32(1), 115 (1957) [Sov. Phys. JETP 5, 64 (1957)].

    MATH  Google Scholar 

  5. W. Kohn and J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  6. N. N. Kalitkin, Zh. Éksp. Teor. Fiz. 38, 1534 (1960) [Sov. Phys. JETP 11, 1106 (1960)].

    MathSciNet  Google Scholar 

  7. J. W. Zink, Phys. Rev. 176, 279 (1968).

    Article  ADS  Google Scholar 

  8. B. F. Rozsnyai, Phys. Rev. A 5, 1137 (1972).

    Article  ADS  Google Scholar 

  9. D. A. Kirzhnits, Yu. E. Lozovik, and G. V. Shpatakovskaya, Usp. Fiz. Nauk 117, 3 (1975) [Sov. Phys. Usp. 18, 649 (1975)].

    Google Scholar 

  10. A. F. Nikiforov, V. G. Novikov, and V. B. Uvarov, Quantum Statistical Models of High-Temperature Plasma (Fizmatlit, Moscow, 2000) [in Russian].

    Google Scholar 

  11. N. N. Kalitkin, Mat. Model. 1, 64 (1989).

    MATH  MathSciNet  Google Scholar 

  12. A. V. Andriyash and V. A. Simonenko, Fiz. Plazmy 14, 1201 (1988) [Sov. J. Plasma Phys. 14, 703 (1988)].

    Google Scholar 

  13. G. V. Sin’ko, Teplofiz. Vys. Temp. 21, 1041 (1983).

    Google Scholar 

  14. N. N. Kalitkin and L. V. Kuz’mina, Fiz. Plazmy 2, 858 (1976) [Sov. J. Plasma Phys. 2, 478 (1976)].

    Google Scholar 

  15. F. Perrot and M. W. C. Dharma-Wardana, Phys. Rev. E 52, 5352 (1995).

    Article  ADS  Google Scholar 

  16. V. V. Prut, Preprint No. 6465/9, IAE (Kurchatov Institute of Atomic Energy, Moscow, 2003).

  17. D. Pines and P. Noziéres, The Theory of Quantum Liquids (Benjamin, New York, 1966; Mir, Moscow, 1967).

    Google Scholar 

  18. S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).

    ADS  Google Scholar 

  19. K. S. Singwi and M. P. Tosi, Solid State Phys. 36, 177 (1981).

    Google Scholar 

  20. S. Ichimaru, Rev. Mod. Phys. 54, 1017 (1982).

    Article  ADS  Google Scholar 

  21. M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364 (1957).

    ADS  MathSciNet  Google Scholar 

  22. W. J. Carr and A. A. Maradudin, Phys. Rev. 133, A371 (1964).

    Article  ADS  Google Scholar 

  23. W. J. Carr, R. A. Coldwell-Horsfall, and A. E. Fein, Phys. Rev. 124, 747 (1961).

    Article  ADS  Google Scholar 

  24. D. M. Ceperly and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).

    ADS  Google Scholar 

  25. J. G. Zabolitzky, Phys. Rev. B 22, 2353 (1980).

    Article  ADS  Google Scholar 

  26. P. Vashishta and K. S. Singwi, Phys. Rev. B 6, 875 (1972).

    ADS  Google Scholar 

  27. L. J. Lantto, Phys. Rev. B 22, 1380 (1980).

    Article  ADS  Google Scholar 

  28. J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  ADS  Google Scholar 

  29. T. Endo, M. Horiuchi, Y. Takada, and H. Yasuhara, Phys. Rev. B 59, 7367 (1999).

    ADS  Google Scholar 

  30. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989, 4th ed.; Pergamon, New York, 1977, 3rd ed.).

    Google Scholar 

  31. J. P. Perdew, J. A. Chevary, S. H. Vosko, et al., Phys. Rev. B 46, 6671 (1992).

    ADS  Google Scholar 

  32. J. F. Dobson, J. Wang, and T. Gould, Phys. Rev. B 66, 081108 (2002).

    Google Scholar 

  33. E. Engel and S. H. Vosko, Phys. Rev. B 50, 10498 (1994).

  34. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  35. P. Fromy, C. Deutch, and G. Maynard, Phys. Plasmas 3, 714 (1996).

    Article  ADS  Google Scholar 

  36. E. N. Avrorin, B. K. Vodolaga, V. A. Simonenko, and V. E. Fortov, Usp. Fiz. Nauk 163, 1 (1993) [Phys. Usp. 36, 337 (1993)].

    Google Scholar 

  37. V. V. Prut, Preprint No. 6464/9, IAE (Kurchatov Institute of Atomic Energy, Moscow, 2003).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 74, No. 12, 2004, pp. 10–20.

Original Russian Text Copyright © 2004 by Prut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prut, V.V. Equation of state in the quasi-classical approximation. Tech. Phys. 49, 1546–1557 (2004). https://doi.org/10.1134/1.1841402

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1841402

Keywords

Navigation