Skip to main content
Log in

Mesoscopic mixing of spin orientation phases in particles with Ising ions: Holmium: Yttrium iron garnets in strong magnetic fields

  • Solids
  • Electronic Properties
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The paper presents a theoretical analysis of macroscopic quantum tunneling phenomena in small particles of a cubic ferromagnet of the HoxY3−x Fe5O12 type with strongly anisotropic (Ising) impurity ions present in a low concentration x ≪ 1 in the region of strong magnetic fields, at which many orientation phase transitions related to the competition of external and exchange field actions on the spin subsystem are observed. The theory of path integrals for the magnetic subsystem was used to calculate the instanton contributions to interphase tunneling amplitudes in the vicinity of first-order transitions for three principal orientations of an external magnetic field in a cubic crystal. It was shown that low-energy barriers separating angular phases could result in anomalously large mesoscopic volumes at which macroscopic spin tunneling effects could appear in the energy spectra of particles. The special features of spectral splitting caused by the mixing of azimuthally degenerate angular phases and phases with different polar angles of magnetization orientation were revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Enz and R. Shilling, J. Phys. C 19, 1765 (1986); J. L. van Hemmen and A. Suto, Phys. Rev. B 141, 37 (1986); E. M. Chudnovsky and L. Gunter, Phys. Rev. Lett. 60, 661 (1988).

    Article  ADS  Google Scholar 

  2. E. M. Chudnovsky and J. Tejada, Macroscopic Quantum Tunneling of the Magnetic Moment (Cambridge Univ. Press, Cambridge, 1998).

    Google Scholar 

  3. D. D. Awshalom, M. A. McCord, and G. Grinstein, Phys. Rev. Lett. 65, 783 (1990); D. D. Awshalom, J. F. Smith, G. Grinstein, et al., Phys. Rev. Lett. 68, 3092 (1992).

    ADS  Google Scholar 

  4. M. Uehara and B. Barbara, J. Phys. (Paris) 47, 235 (1986); C. Paulsen, L. C. Sampaio, B. Barbara, et al., Phys. Lett. A 161, 319 (1991).

    Google Scholar 

  5. M. Dressel, B. Gorshunov, K. Rajagopal, et al., Phys. Rev. B 67, 060405(R) (2003).

  6. A. Garg, Europhys. Lett. 22, 205 (1993); V. Yu. Golyshev and A. F. Popkov, Europhys. Lett. 29, 327 (1995).

    ADS  Google Scholar 

  7. T. Egami, Phys. Status Solidi A 20, 157 (1973); E. M. Chudnovsky, O. Iglesias, and P. C. E. Stamp, Phys. Rev. B 46, 5392 (1992); V. V. Dobrovitskii and A. K. Zvezdin, J. Magn. Magn. Mater. 156, 205 (1996); A. F. Popkov, Fiz. Tverd. Tela (St. Petersburg) 44, 135 (2002) [Phys. Solid State 44, 140 (2002)].

    Google Scholar 

  8. D. Gatteschi, A. Caneschi, L. Paedi, and R. Sessoli, Science 265, 1054 (1994); F. Lionti et al., J. Appl. Phys. 81, 4608 (1997); I. Tupitsin and B. Barbara, in Magnetism: Molecules to Materials, Ed. by A. Muller and M. Drillon (Wiley-VCH, Weinheim, 2000); P. Politi, A. Rettori, F. Hartmann-Boutron, and J. Villian, Phys. Rev. Lett. 75, 537 (1995).

    ADS  Google Scholar 

  9. D. Loss, D. P. DiVincenzo, and G., Phys. Rev. Lett. 69, 3232 (1992); J. Von Delft and C. L. Henley, Phys. Rev. Lett. 69, 3236 (1992).

    ADS  Google Scholar 

  10. N. V. Prokof’ev and P. C. E. Stamp, J. Phys.: Condens. Matter 5, L667 (1994).

    Google Scholar 

  11. P. C. E. Stamp, Physica B (Amsterdam) 197, 133 (1994).

    ADS  Google Scholar 

  12. V. Yu. Golyshev and A. F. Popkov, Phys. Rev. B 56, 2712 (1997).

    Article  ADS  Google Scholar 

  13. A. A. Mukhin, A. S. Prokhorov, B. P. Gorshunov, et al., Usp. Fiz. Nauk 172, 1306 (2002) [Phys. Usp. 45, 1186 (2002)].

    Google Scholar 

  14. A. K. Zvezdin, A. A. Mukhin, and A. I. Popov, Zh. Éksp. Teor. Fiz. 72, 1097 (1977) [Sov. Phys. JETP 45, 573 (1977)].

    Google Scholar 

  15. R. Z. Levitin, A. I. Popov, and V. V. Snegirev, Fiz. Tverd. Tela (Leningrad) 24, 3138 (1982) [Sov. Phys. Solid State 24, 1777 (1982)].

    Google Scholar 

  16. K. P. Belov, A. K. Zvezdin, A. M. Kadomtseva, and R. Z. Levitin, Reorientational Transitions in Rare-Earth Magnets (Nauka, Moscow, 1980), p. 271 [in Russian]; A. K. Zvezdin, V. M. Matveev, A. A. Mukhin, and A. I. Popov, Rare-Earth Ions in Magnetic-Ordered Crystals (Nauka, Moscow, 1985), p. 142 [in Russian].

    Google Scholar 

  17. A. F. Popkov and A. I. Popov, Pis’ma Zh. Éksp. Teor. Fiz. 65, 445 (1997) [JETP Lett. 65, 470 (1997)].

    Google Scholar 

  18. A. K. Zvezdin and A. F. Popkov, Pis’ma Zh. Éksp. Teor. Fiz. 57, 548 (1993) [JETP Lett. 57, 562 (1993)].

    Google Scholar 

  19. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965; Mir, Moscow, 1968); S. Coleman, Aspects of Symmetry (Cambridge Univ. Press, Cambridge, 1985); A. J. Legett, Rev. Mod. Phys. 59, 1 (1987).

    Google Scholar 

  20. A. Garg and G.-H. Kim, Phys. Rev. B 45, 12 921 (1992).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 126, No. 4, 2004, pp. 962–978.

Original Russian Text Copyright © 2004 by Popov, Popkov, Kulagin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, A.I., Popkov, A.F. & Kulagin, N.E. Mesoscopic mixing of spin orientation phases in particles with Ising ions: Holmium: Yttrium iron garnets in strong magnetic fields. J. Exp. Theor. Phys. 99, 834–849 (2004). https://doi.org/10.1134/1.1826177

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1826177

Keywords

Navigation