Skip to main content
Log in

Magnetic ordering in La1−x SrxMnO3−x/2 anion-deficient manganites

  • Solids
  • Structure
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The structural, magnetic, and electrotransport properties of La1−x SrxMnO3− x/2(0≤x≤0.30) manganites with perovskite structure are investigated experimentally as a function of oxygen deficiency. In the solid solutions La1−x SrxMnO3, a change in the type of symmetry of the unit cell is observed at x=0.125. Samples with x≤0.125 are characterized by an O′-orthorhombic unit cell, whereas samples with x>0.125 are characterized by a rhombohedral unit cell. The structural properties of the anion-deficient solid solutions La1−x SrxMnO3−x/2 are analogous to those of the stoichiometric system. It is assumed that, as the oxygen content decreases, La1− x SrxMnO3−x/2 anion-deficient solid solutions experience a series of successive magnetic phase transformations in the ground state: from an A-type (x=0) antiferromagnet to a cluster spin-glass-type inhomogeneous magnetic state (0.175>x≤0.30) through a two-phase (antiferromagnetic and ferromagnetic) state (0>x≤0.175). The anion-deficient solid solution with x=0.175 has the maximal value of the ferromagnetic component. As the oxygen deficiency increases, the resistivity of La1− x SrxMnO3−x/2 samples first decreases (up to a value of x=0.175), acquiring an activation character, and then increases (up to a value of x=0.30). In this case, none of the anion-deficient solid solutions exhibits a metal-semiconductor transition in the whole range of concentrations considered. A peak of magnetoresistance at a temperature below the point of magnetic ordering is observed only in the sample with x=0.175. The results of experiments carried out with a series of La1−x SrxMnO3−x/2 anion-deficient solid solutions are summarized in the concentration diagrams of the spontaneous magnetic moment and the critical temperature of magnetic phase transitions. Hypothetical magnetic phase states are pointed out. The experimental results obtained can be interpreted in terms of the phase-separation model and the competition between ferromagnetic and antiferromagnetic indirect superex-change interactions. It is assumed that Mn3+-O-Mn3+ indirect superexchange interactions in the orbitally disordered phase are positive in the case of octahedral coordination of manganese ions and are negative when the coordination of at least one Mn3+ ion is pentahedral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. H. Jonker and J. H. van Santen, Physica (Utrecht) 16, 337 (1950).

    Article  Google Scholar 

  2. G. H. Jonker and J. H. van Santen, Physica (Utrecht) 16, 599 (1950).

    Article  Google Scholar 

  3. A. Ramirez, J. Phys.: Condens. Matter 9, 8171 (1997).

    Article  ADS  Google Scholar 

  4. M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).

    Article  ADS  Google Scholar 

  5. J. Coey, M. Viret, and S. von Molnar, Adv. Phys. 48, 167 (1999).

    Article  ADS  Google Scholar 

  6. Y. Tokura and Y. Tomioka, J. Magn. Magn. Mater. 200, 1 (1999).

    Article  ADS  Google Scholar 

  7. V. M. Loktev and Yu. G. Pogorelov, Low Temp. Phys. 26, 171 (2000).

    ADS  Google Scholar 

  8. E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2001).

    Article  ADS  Google Scholar 

  9. E. L. Nagaev, Phys. Rep. 346, 387 (2001).

    Article  ADS  Google Scholar 

  10. M. B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001).

    Article  ADS  Google Scholar 

  11. D. M. Edwards, Adv. Phys. 51, 1259 (2002).

    ADS  Google Scholar 

  12. S. M. Dunaevskii, Phys. Solid State 46, 193 (2004).

    Article  Google Scholar 

  13. R. von Helmholt, J. Wecker, B. Holzapfel, et al., Phys. Rev. Lett. 71, 2331 (1993).

    ADS  Google Scholar 

  14. K. Chabara, T. Ohno, M. Kasai, et al., Appl. Phys. Lett. 63, 1990 (1993).

    ADS  Google Scholar 

  15. S. Jin, T. H. Tiefel, M. McCormack, et al., Science 264, 413 (1994).

    ADS  Google Scholar 

  16. D. Hawe, Sens. Actuators 81, 268 (2000).

    Google Scholar 

  17. K. M. H. Lenssen, D. J. Adelerhof, H. J. Gassen, et al., Sens. Actuators 85, 1 (2000).

    Article  Google Scholar 

  18. I. Dzialoshinsky, J. Phys. Chem. Solids 4, 241 (1958).

    Google Scholar 

  19. T. Moriya, Phys. Rev. 120, 91 (1960).

    Article  ADS  Google Scholar 

  20. G. Matsumoto, J. Phys. Soc. Jpn. 29, 606 (1970).

    Google Scholar 

  21. G. Matsumoto, J. Phys. Soc. Jpn. 29, 615 (1970).

    Google Scholar 

  22. I. O. Troyanchuk, Zh. Éksp. Teor. Fiz. 102, 132 (1992) [Sov. Phys. JETP 75, 132 (1992)].

    Google Scholar 

  23. C. Zener, Phys. Rev. 82, 403 (1951).

    Article  ADS  Google Scholar 

  24. C. Zener, Phys. Rev. 82, 440 (1951).

    Article  ADS  Google Scholar 

  25. P.-G. de Gennes, Phys. Rev. 118, 141 (1960).

    ADS  Google Scholar 

  26. J. B. Goodenough, Phys. Rev. 100, 564 (1955).

    Article  ADS  Google Scholar 

  27. J. B. Goodenough, A. Wold, R. J. Arnott, and N. Menyuk, Phys. Rev. 124, 373 (1961).

    Article  ADS  Google Scholar 

  28. T. Chatterji, B. Ouladdiaf, P. Mandal, et al., Phys. Rev. B 66, 054403 (2002).

  29. A. Urushibara, Y. Moritomo, T. Arima, et al., Phys. Rev. B 51, 14103 (1995).

  30. H. Kawano, R. Kajimoto, M. Kubota, and H. Yoshizawa, Phys. Rev. B 53, R14709 (1996).

  31. D. Louca, T. Egami, E. L. Brosha, et al., Phys. Rev. B 56, R8475 (1997).

  32. J. S. Zhou, J. B. Goodenough, A. Asamitsu, and Y. Tokura, Phys. Rev. Lett. 79, 3234 (1997).

    Article  ADS  Google Scholar 

  33. G. L. Liu, J. S. Zhou, and J. B. Goodenough, Phys. Rev. B 64, 144414 (2001).

    Google Scholar 

  34. B. C. Tofield and W. R. Scott, J. Solid State Chem. 100, 183 (1974).

    ADS  Google Scholar 

  35. H. L. Ju, J. Gopalakrishnan, J. L. Peng, et al., Phys. Rev. B 51, 6143 (1995).

    Article  ADS  Google Scholar 

  36. M. Itoh, K. Nishi, J. D. Yu, and Y. Inaguma, Phys. Rev. B 55, 14408 (1997).

  37. A. M. De Leon-Guevara, P. Berthet, J. Berthon, et al., Phys. Rev. B 56, 6031 (1997).

    ADS  Google Scholar 

  38. P. Schiffer, A. P. Ramirez, W. Bao, and S.-W. Cheong, Phys. Rev. Lett. 75, 3336 (1995).

    Article  ADS  Google Scholar 

  39. S. V. Trukhanov, I. O. Troyanchuk, N. V. Pushkarev, and G. Shimchak, Zh. Éksp. Teor. Fiz. 123, 128 (2003) [JETP 96, 110 (2003)].

    Google Scholar 

  40. I. O. Troyanchuk, S. V. Trukhanov, G. Shimchak, et al., Zh. Éksp. Teor. Fiz. 120, 183 (2001) [JETP 93, 161 (2001)].

    Google Scholar 

  41. R. D. Shannon, Acta Crystallogr. A 32, 751 (1976).

    Article  Google Scholar 

  42. H. Watanabe, J. Phys. Soc. Jpn. 16, 433 (1961).

    Google Scholar 

  43. S. V. Trukhanov, I. O. Troyanchuk, M. Hervieu, et al., Phys. Rev. B 66, 184424 (2002).

    Google Scholar 

  44. E. E. Havinga, Philips Res. Rep. 21, 432 (1966).

    Google Scholar 

  45. K. R. Poeppelmeier, M. E. Leonowicz, J. C. Scanlon, et al., J. Solid State Chem. 45, 71 (1982).

    Article  ADS  Google Scholar 

  46. S. Nafis, J. A. Woollam, Z. S. Shan, and D. J. Sellmyer, J. Appl. Phys. 70, 6050 (1991).

    Article  ADS  Google Scholar 

  47. F. Conde, C. Gomez-Polo, and A. Hernando, J. Magn. Magn. Mater. 138, 123 (1994).

    ADS  Google Scholar 

  48. K. A. Thomas, P. S. I. P. N. de Silva, L. F. Cohen, et al., J. Appl. Phys. 84, 3939 (1998).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 126, No. 4, 2004, pp. 874–886.

Original Russian Text Copyright © 2004 by Trukhanov, Bushinsky, Troyanchuk, Szymczak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trukhanov, S.V., Bushinsky, M.V., Troyanchuk, I.O. et al. Magnetic ordering in La1−x SrxMnO3−x/2 anion-deficient manganites. J. Exp. Theor. Phys. 99, 756–765 (2004). https://doi.org/10.1134/1.1826167

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1826167

Keywords

Navigation