Skip to main content
Log in

Energy disorder in polysilanes

  • Polymers and Liquid Crystals
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The absorption spectra (T=295 K), photoluminescence spectra (T=5–295 K), and thermally stimulated luminescence curves (T=5–295 K) of poly(di-n-hexylsilane) (PDHS), poly(methyl-n-hexylsilane) (PMHS), poly(methylcyclohexylsilane) (PMCHS), and poly(methylphenylsilane) (PMPS) films are measured. The results obtained are analyzed within the model of random hoppings of excitons and charge carriers over sites with a Gaussian distribution of the density of states. It is established that the variance parameters of the density-of-state functions of excitons and charge carriers characterize the energy disorder and depend on the chemical nature of side groups of the polymer, the conformation of segments of the main chain of the polymer macromolecule, and the temperature. At room temperature, the energy disorder in crystalline regions of the PDHS film is explained in terms of fluctuations in the number of monomer units in chain segments. In polymers with nonsymmetric side groups (such as PMHS, PMCHS, and PMPS), the disorder is more pronounced due to the formation of conformers in which silicon atoms occupy different positions in the chain. In the PMPS polymer, the disorder occurs through one more mechanism associated with fluctuations of the angle between the plane of the phenyl ring and the axis of the polymer segment due to mixing of σ-and π-electron states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. E. Johnson and K. M. McGrane, in Photophysics of Polymers, Ed. by C. E. Hoyle and J. M. Torkelson (Washington, 1987), ASC Symp. Ser., Vol. 358, pp. 499–515.

  2. R. D. Miller and J. Michl, Chem. Rev. 89, 1359 (1989).

    Google Scholar 

  3. M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers (Oxford Univ. Press, New York, 1999), pp. 877–901.

    Google Scholar 

  4. N. Matsumoto, Jpn. J. Appl. Phys. 37, 5425 (1998).

    Google Scholar 

  5. G. P. van Laan, M. de Haas, A. Hummel, H. Frey, and M. Moller, J. Phys. Chem. 100, 5470 (1996).

    Google Scholar 

  6. P. M. Borsenberger and D. S. Weiss, Organic Photoreceptors for Xerography (Marcel Dekker, New York, 1998).

    Google Scholar 

  7. S. S. Badesha, M. Shanin, and D. M. Pai, US Patent No. 5,166,016 (1992).

  8. S. M. Silence, J. C. Scott, E. J. Ginsburg, P. K. Jenkner, R. D. Miller, R. J. Twieg, and W. E. Moerner, J. Opt. Soc. Am. B 10, 2306 (1993).

    ADS  Google Scholar 

  9. H. Suzuki, H. Meyer, S. Hoshino, and D. Haarer, J. Appl. Phys. 78, 2684 (1995).

    ADS  Google Scholar 

  10. A. Fujii, K. Yoshimoto, M. Yosida, Y. Ohmori, K. Yoshino, H. Ueno, M. Kakimoto, and H. Kojima, Jpn. J. Appl. Phys. 35, 3914 (1996).

    Google Scholar 

  11. S. Nespurek, A. Kadashchuk, Yu. Skryshevski, A. Fujii, and K. Yoshino, J. Lumin. 99, 131 (2002).

    Google Scholar 

  12. R. G. Pitt, M. M. Bursey, and P. F. Rogerson, J. Am. Chem. Soc. 92, 519 (1970).

    Article  Google Scholar 

  13. A. Elschner, R. F. Mahrt, L. Pautmeier, H. Bassler, M. Stolka, and K. McGrane, Chem. Phys. 150, 81 (1991).

    Article  Google Scholar 

  14. H. Bassler, Phys. Status Solidi B 175, 15 (1993).

    Google Scholar 

  15. H. Bassler, in Disorder Effects on Relaxational Processes, Ed. by R. Blumen (Springer-Verlag, Berlin, 1994), pp. 485–507.

    Google Scholar 

  16. A. Tilgner, H. P. Trommsdorff, J. M. Zeigler, and R. M. Hochstrasser, J. Chem. Phys. 96, 781 (1992).

    Article  ADS  Google Scholar 

  17. A. Kadashchuk, N. Ostapenko, V. Zaika, and S. Nespurek, Chem. Phys. 234, 285 (1998).

    Article  Google Scholar 

  18. Yu. A. Skryshevskii and A. Yu. Vakhnin, Fiz. Tverd. Tela (St. Petersburg) 43, 569 (2001) [Phys. Solid State 43, 589 (2001)].

    Google Scholar 

  19. Yu. A. Skryshevskii, Zh. Prikl. Spektrosk. 70, 755 (2003).

    Google Scholar 

  20. C.-H. Yuan and R. West, Macromolecules 27, 629 (1994).

    Article  Google Scholar 

  21. M. Shimizu, S. Suto, T. Goto, A. Watanabe, and M. Matsuda, Phys. Rev. B 63, 073403 (2001).

    Google Scholar 

  22. Yu. A. Skryshevski, Fiz. Tverd. Tela (St. Petersburg) 44, 1705 (2002) [Phys. Solid State 44, 1785 (2002)].

    Google Scholar 

  23. B. Hartenstein and H. Bassler, J. Non-Cryst. Solids 190, 112 (1995).

    Article  Google Scholar 

  24. K. Fukuda, T. Seki, and K. Ichimura, Macromolecules 36, 2177 (2002).

    Google Scholar 

  25. V. L. Broude, E. I. Rashba, and E. F. Sheka, Spectroscopy of Molecular Excitons (Énergoizdat, Moscow, 1981) [in Russian].

    Google Scholar 

  26. É. A. Silin’sh, M. V. Kurik, and V. Chapek, Electronic Processes in Organic Molecular Crystals: Localization and Polarization Phenomena (Zinatne, Riga, 1998) [in Russian].

    Google Scholar 

  27. A. I. Slutsker, L. A. Laius, I. V. Gofman, V. L. Gilyarov, and Yu. I. Polikarpov, Fiz. Tverd. Tela (St. Petersburg) 43, 1327 (2001) [Phys. Solid State 43, 1382 (2001)].

    Google Scholar 

  28. K. Takeda, M. Fujino, K. Seki, and H. Inokuchi, Phys. Rev. B 36, 8129 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 46, No. 11, 2004, pp. 2104–2108.

Original Russian Text Copyright © 2004 by Skryshevski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skryshevski, Y.A. Energy disorder in polysilanes. Phys. Solid State 46, 2177–2182 (2004). https://doi.org/10.1134/1.1825567

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1825567

Keywords

Navigation