Skip to main content
Log in

Electrical properties of amorphous (Co45Fe45Zr10)x(Al2O3)1−x nanocomposites

  • Low-Dimensional Systems and Surface Physics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The electrical properties of (Co45Fe45Zr10)x(Al2O3)1−x granular nanocomposites have been studied. The concentration dependences of electrical resistivity are S-shaped (in accordance with the percolation theory of conduction) with a threshold at a metallic component concentration of ∼41 at. %. An analysis of the temperature behavior carried out in the range 300–973 K revealed that structural relaxation and crystallization of the amorphous phase are accompanied by a decrease in the electrical resistivity of the composites above the percolation threshold and by its increase below the percolation threshold. For metallic phase concentrations x<41 at. %, variable range hopping conduction over localized states near the Fermi level was found to be dominant at low temperatures (77–180 K). A further increase in temperature brings about a crossover of the conduction mechanism from Mott’s law ln(σ) ∝ (1/T)1/4 to ln(σ) ∝ (1/T)1/2. A model of inelastic resonance tunneling over a chain of localized states of the dielectric matrix was used to find the average number of localized states involved in the charge transport between metallic grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Honda, J. Magn. Magn. Mater. 165, 153 (1997).

    ADS  Google Scholar 

  2. K. Yakushiji, S. Mitani, and K. Takanashi, J. Magn. Magn. Mater. 212, 75 (2000).

    Article  ADS  Google Scholar 

  3. N. Kobayashi, S. Ohnuma, T. Masumoto, and H. Fujimori, J. Appl. Phys. 90(8), 4159 (2001).

    Article  ADS  Google Scholar 

  4. I. V. Bykov, E. A. Gan’shina, A. B. Granovskii, and V. S. Gushchin, Fiz. Tverd. Tela (St. Petersburg) 42(3), 487 (2000) [Phys. Solid State 42, 498 (2000)].

    Google Scholar 

  5. A. V. Kimel’, R. V. Pisarev, A. A. Rzhevskii, Yu. E. Kalinin, A. V. Sitnikov, O. V. Stognei, F. Bentivegna, and Th. Rasing, Fiz. Tverd. Tela (St. Petersburg) 45(2), 269 (2003) [Phys. Solid State 45, 283 (2003)].

    Google Scholar 

  6. N. E. Kazantseva, A. T. Ponomarenko, V. G. Shevchenko, I. A. Chmutin, Yu. E. Kalinin, and A. V. Sitnikov, Fiz. Khim. Obrab. Mater., No. 1, 5 (2002).

  7. O. V. Stognei, Yu. E. Kalinin, A. V. Sitnikov, I. V. Zolotukhin, and A. V. Slyusarev, Fiz. Met. Metalloved. 91(1), 24 (2001) [Phys. Met. Metallogr. 91, 21 (2001)].

    Google Scholar 

  8. B. A. Aronzon, A. E. Varfolomeev, A. A. Likal’ter, V. V. Ryl’kov, and M. V. Sedova, Fiz. Tverd. Tela (St. Petersburg) 41(6), 944 (1999) [Phys. Solid State 41, 857 (1999)].

    Google Scholar 

  9. Yu. E. Kalinin, A. V. Sitnikov, O. V. Stognei, I. V. Zolotukhin, and P. V. Neretin, Mater. Sci. Eng. A 304–306, 941 (2001).

    Google Scholar 

  10. H. R. Khan, A. Granovsky, F. Brouers, E. Ganshina, J. P. Clerc, and M. Kurmichev, J. Magn. Magn. Mater. 183, 127 (1998).

    ADS  Google Scholar 

  11. J. C. Denardin, A. B. Pakhomov, M. Knobel, H. Liu, and X. X. Zhang, J. Phys.: Condens. Matter 12, 3397 (2000).

    Article  ADS  Google Scholar 

  12. B. Abeles, R. W. Cohen, and G. W. Cullen, Phys. Rev. Lett. 17, 632 (1966).

    Article  ADS  Google Scholar 

  13. P. Sheng, B. Abeles, and Y. Arie, Phys. Rev. Lett. 31(1), 44 (1973).

    Article  ADS  Google Scholar 

  14. E. Cuevas, M. Ortuño, and J. Ruiz, Phys. Rev. Lett. 71(12), 1871 (1993).

    Article  ADS  Google Scholar 

  15. E. Z. Meilikhov, Zh. Éksp. Teor. Fiz. 115(4), 1484 (1999) [JETP 88, 819 (1999)].

    Google Scholar 

  16. L. I. Glazman and K. A. Matveev, Zh. Éksp. Teor. Fiz. 94(6), 332 (1988) [Sov. Phys. JETP 67, 1276 (1988)].

    Google Scholar 

  17. L. I. Glazman and R. I. Shekhter, Zh. Éksp. Teor. Fiz. 94(1), 292 (1988) [Sov. Phys. JETP 67, 1462 (1988)].

    Google Scholar 

  18. L. V. Lutsev, T. K. Zvonareva, and V. M. Lebedev, Pis’ma Zh. Tekh. Fiz. 27(15), 84 (2001) [Tech. Phys. Lett. 27, 659 (2001)].

    Google Scholar 

  19. L. V. Lutsev, Yu. E. Kalinin, A. V. Sitnikov, and O. V. Stognei, Fiz. Tverd. Tela (St. Petersburg) 44(10), 1802 (2002) [Phys. Solid State 44, 1889 (2002)].

    Google Scholar 

  20. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon, Oxford, 1971; Mir, Moscow, 1974).

    Google Scholar 

  21. S. Weng, S. Moehlecke, and M. Strongin, Phys. Rev. Lett. 50(22), 1795 (1983).

    Article  ADS  Google Scholar 

  22. M. A. S. Boff, J. Geshev, J. E. Schmidt, W. H. Flores, A. B. Antunes, M. A. Gusmao, and S. R. Teixeira, J. Appl. Phys. 91(12), 9909 (2002).

    Article  ADS  Google Scholar 

  23. I. V. Zolotukhin, Yu. E. Kalinin, P. V. Neretin, A. V. Sitnikov, and O. V. Stognei, Al’ternativ. Énerget. Ékol., No. 2, 7 (2002).

  24. P. Olhafen, in Glassy Metals II: Atomic Structure and Dynamics, Electronic Structure, Magnetic Properties, Ed. by H. Beck and G. Güntherodt (Springer, Heidelberg, 1984; Mir, Moscow, 1986).

    Google Scholar 

  25. W. Heywang et al., in Amorphen und Polykristallinen Halbleiter, Ed. by W. Heywang (Springer, Heidelberg, 1984; Mir, Moscow, 1987).

    Google Scholar 

  26. Yu. E. Kalinin, A. N. Remizov, A. V. Sitnikov, and N. P. Samtsova, Perspekt. Mater., No. 3, 62 (2003).

  27. Yu. R. Zakis, Defects in Vitreous State of Material (Zinatne, Riga, 1984) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 46, No. 11, 2004, pp. 2076–2082.

Original Russian Text Copyright © 2004 by Kalinin, Remizov, Sitnikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalinin, Y.E., Remizov, A.N. & Sitnikov, A.V. Electrical properties of amorphous (Co45Fe45Zr10)x(Al2O3)1−x nanocomposites. Phys. Solid State 46, 2146–2152 (2004). https://doi.org/10.1134/1.1825563

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1825563

Keywords

Navigation