Skip to main content
Log in

Chain decay of low-angle tilt boundaries in nanocrystalline materials

  • Defects, Dislocations, and Physics of Strength
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

In terms of two-dimensional dislocation-disclination dynamics, a theoretical model is developed to describe the decay of a low-angle tilt boundary in a deformed nanocrystalline material under the action of an externally applied elastic stress and of the elastic field of a neighboring decayed boundary. The critical external stresses are calculated at which the boundary decays and the dislocations making up this boundary either are trapped by the boundary that decayed earlier or break away from both boundaries. The decay of a low-angle tilt boundary is shown to result in a substantial decrease in the critical decay stresses for the neighboring boundaries, which can cause an avalanche-like chain decay of low-angle boundaries yielding high-density ensembles of mobile dislocations capable of carrying substantial plastic deformations and of forming shear bands in deformed nanocrystalline materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. S. Pande, R. A. Masumura, and R. W. Armstrong, Nanostruct. Mater. 2(3), 323 (1993).

    Google Scholar 

  2. G. A. Malygin, Fiz. Tverd. Tela (St. Petersburg) 37(8), 2281 (1995) [Phys. Solid State 37, 1248 (1995)].

    Google Scholar 

  3. K. S. Kumar, S. Suresh, M. F. Chisholm, J. A. Horton, and P. Wang, Acta Mater. 51(3), 387 (2003).

    Article  Google Scholar 

  4. K. S. Kumar, S. Suresh, and H. Swygenhoven, Acta Mater. 51(12), 5743 (2003).

    Google Scholar 

  5. R. A. Masumura, P. M. Hazzledine, and C. S. Pande, Acta Mater. 46(13), 4527 (1998).

    Article  Google Scholar 

  6. A. A. Fedorov, M. Yu. Gutkin, and I. A. Ovid’ko, Scr. Mater. 47(1), 51 (2002).

    Article  Google Scholar 

  7. M. Murayama, J. M. Howe, H. Hidaka, and S. Takaki, Science 295(5564), 2433 (2002).

    Article  ADS  Google Scholar 

  8. I. A. Ovid’ko, Science 295(5564), 2386 (2002).

    Google Scholar 

  9. M. Yu. Gutkin, A. L. Kolesnikova, I. A. Ovid’ko, and N. V. Skiba, Philos. Mag. Lett. 82(12), 651 (2002).

    Article  Google Scholar 

  10. M. Yu. Gutkin, I. A. Ovid’ko, and N. V. Skiba, Acta Mater. 51(14), 4059 (2003).

    Article  Google Scholar 

  11. H. Hahn, P. Mondal, and K. A. Padmanabhan, Nanostruct. Mater. 9(1–8), 603 (1997).

    Google Scholar 

  12. H. Hahn and K. A. Padmanabhan, Philos. Mag. B 76(4), 559 (1997).

    Google Scholar 

  13. D. A. Konstantinidis and E. C. Aifantis, Nanostruct. Mater. 10(7), 1111 (1998).

    Google Scholar 

  14. A. A. Fedorov, M. Yu. Gutkin, and I. A. Ovid’ko, Acta Mater. 51(4), 887 (2003).

    Article  Google Scholar 

  15. M. Chen, E. Ma, K. J. Hemker, H. Sheng, Y. Wang, and X. Cheng, Science 300(5623), 1275 (2003).

    Article  ADS  Google Scholar 

  16. D. V. Shtanskii, S. A. Kulinich, E. A. Levashov, and J. J. Moore, Fiz. Tverd. Tela (St. Petersburg) 45(6), 1122 (2003) [Phys. Solid State 45, 1177 (2003)].

    Google Scholar 

  17. O. V. Klyavin, V. I. Nikolaev, L. V. Khabarin, Yu. M. Chernov, and V. V. Shpeizman, Fiz. Tverd. Tela (St. Petersburg) 45(12), 2187 (2003) [Phys. Solid State 45, 2292 (2003)].

    Google Scholar 

  18. M. Yu. Gutkin and I. A. Ovid’ko, Plastic Deformation in Nanocrystalline Materials (Springer, Berlin, 2004).

    Google Scholar 

  19. F. A. Mohamed and Y. Li, Mater. Sci. Eng. A 298, 1 (2001).

    Google Scholar 

  20. S. X. McFadden, R. S. Mishra, R. Z. Valiev, A. P. Zhilyaev, and A. K. Mukherjee, Nature 398(6729), 684 (1999).

    Google Scholar 

  21. R. Z. Valiev, C. Song, S. X. McFadden, A. K. Mukherjee, and R. S. Mishra, Philos. Mag. A 81(1), 25 (2001).

    Google Scholar 

  22. A. K. Mukherjee, Mater. Sci. Eng. A 322(1–2), 1 (2002).

    Google Scholar 

  23. R. Z. Valiev, I. V. Alexandrov, Y. T. Zhu, and T. C. Lowe, J. Mater. Res. 17(1), 5 (2002).

    ADS  Google Scholar 

  24. A. K. Mukherjee, in Creep Deformation: Fundamentals and Applications, Ed. by R. S. Mishra, J. C. Earthman, and S. V. Raj (TMS, Warrendale, 2002), p. 3.

    Google Scholar 

  25. D. Jia, K. T. Ramesh, and E. Ma, Acta Mater. 51(12), 3495 (2003).

    Article  Google Scholar 

  26. J. R. Weertman and P. G. Sanders, Solid State Phenom. 35–36(1), 249 (1994).

    Google Scholar 

  27. S. Zghal, M. J. Hytch, J.-P. Chevalier, R. Twesten, F. Wu, and P. Bellon, Acta Mater. 50(19), 4695 (2002).

    Google Scholar 

  28. A. P. Sutton and R. W. Balluffi, Interfaces in Crystalline Materials (Clarendon, Oxford, 1995).

    Google Scholar 

  29. M. Yu. Gutkin and I. A. Ovid’ko, Phys. Rev. B 63(6), 064515 (2001).

  30. S. V. Bobylev and I. A. Ovid’ko, Phys. Rev. B 67(13), 132506 (2003).

    Google Scholar 

  31. S. V. Bobylev, M. Yu. Gutkin, and I. A. Ovid’ko, J. Phys. D: Appl. Phys. 37(2), 269 (2004).

    Article  ADS  Google Scholar 

  32. K. N. Mikaelyan, M. Seefeldt, M. Yu. Gutkin, P. Klimanek, and A. E. Romanov, Fiz. Tverd. Tela (St. Petersburg) 45(11), 2002 (2003) [Phys. Solid State 45, 2104 (2003)].

    Google Scholar 

  33. Q. Wei, D. Jia, K. T. Ramesh, and E. Ma, Appl. Phys. Lett. 81(8), 1240 (2002).

    ADS  Google Scholar 

  34. U. F. Kocks, A. S. Argon, and M. F. Ashby, Prog. Mater. Sci. 19(5), 1 (1975).

    Google Scholar 

  35. J. P. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1967; Atomizdat, Moscow, 1972).

    Google Scholar 

  36. V. I. Vladimirov and A. E. Romanov, Disclinations in Crystals (Nauka, Leningrad, 1986) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 46, No. 11, 2004, pp. 1986–1990.

Original Russian Text Copyright © 2004 by Bobylev, Gutkin, Ovid’ko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobylev, S.V., Gutkin, M.Y. & Ovid’ko, I.A. Chain decay of low-angle tilt boundaries in nanocrystalline materials. Phys. Solid State 46, 2053–2057 (2004). https://doi.org/10.1134/1.1825548

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1825548

Keywords

Navigation