Skip to main content
Log in

Leptonic decays of the W boson in a strong electromagnetic field

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The probability of W-boson decay into a lepton and a neutrino, \(W^ \pm \to \ell ^ \pm \bar \nu _\ell \), in a strong electromagnetic field is calculated. On the basis of the method for deriving exact solutions to relativistic wave equations for charged particles, an exact analytic expression is obtained for the partial decay width \(\Gamma () = \Gamma (W^ + \to \ell ^ + \bar \upsilon _\ell )\) at an arbitrary value of the external-field-strength parameter \( = eM_W^{ - 3} \sqrt { - (F_{\mu \upsilon } q^\upsilon )^2 } \). It is found that, in the region of comparatively weak fields (ϰ≪1), field-induced corrections to the standard decay width of theW boson in a vacuum are about a few percent. As the external-field-strength parameter is increased, the partial width with respect to W-boson decay through the channel in question, Γ(ϰ), first decreases, the absolute minimum of Γmin=0.926Γ(0) being reached at ϰ=0.6116. A further increase in the external-field strength leads to a monotonic growth of the decay width of the W boson. In superstrong fields (ϰ≫1), the partial width with respect to W boson decay is greater than the corresponding partial width \(\Gamma ^{(0)} (W^ \pm \to \ell ^ \pm \bar \upsilon _\ell )\) in a vacuum by a factor of a few tens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Kunszt, W. J. Stirling, et al., in Physics at LEP-2, Ed. by G. Altarelli, T. Sjöstrand, and F. Zwirner, CERN Report 96-01, Vol. 1, p. 141; hep-ph/9602352.

  2. W. Beenakker, F. A. Berends, et al., in Physics at LEP-2, Ed. by G. Altarelli, T. Sjöstrand, and F. Zwirner, CERN Report 96-01, Vol. 1, p. 81; hep-ph/9602351.

  3. K. Hagiwara et al. (Particle Data Group), Phys. Rev. D 66, 01001 (2002).

    Google Scholar 

  4. A. V. Kurilin, Nuovo Cimento A 112, 977 (1999); hep-ph/0210194.

    ADS  Google Scholar 

  5. K. Hagiwara et al., Nucl. Phys. B 282, 253 (1987).

    Article  ADS  Google Scholar 

  6. W. J. Marciano and A. Sirlin, Phys. Rev. D 8, 3612 (1973); W. J. Marciano and D. Wyler, Z. Phys. C 3, 181 (1979); D. Albert, W. J. Marciano, D. Wyler, and Z. Parsa, Nucl. Phys. B 166, 460 (1980).

    Article  ADS  Google Scholar 

  7. K. Inoue, A. Kakuto, H. Komatsu, and S. Takeshita, Prog. Theor. Phys. 64, 1008 (1980).

    ADS  Google Scholar 

  8. M. Consoli, S. L. Presti, and L. Maiani, Nucl. Phys. B 223, 474 (1983).

    Article  ADS  Google Scholar 

  9. D. Yu. Bardin, S. Riemann, and T. Riemann, Z. Phys. C 32, 121 (1986).

    Article  Google Scholar 

  10. F. Jegerlehner, Z. Phys. C 32, 425 (1986); 38, 519 (E) (1988).

    Google Scholar 

  11. J. W. Jun and C. Jue, Mod. Phys. Lett. A 6, 2767 (1991).

    ADS  Google Scholar 

  12. A. Denner and T. Sack, Z. Phys. C 46, 653 (1990); A. Denner, Fortschr. Phys. 41, 307 (1993).

    Article  Google Scholar 

  13. T. H. Chang, K. J. F. Gaemers, and W. L. van Neerven, Nucl. Phys. B 202, 407 (1982).

    Article  ADS  Google Scholar 

  14. T. Alvarez, A. Leites, and J. Terron, Nucl. Phys. B 301, 1 (1988).

    Article  ADS  Google Scholar 

  15. J. Rosner, M. Worah, and T. Takeuchi, Phys. Rev. D 49, 1363 (1994).

    Article  ADS  Google Scholar 

  16. D.-S. Shin, Nucl. Phys. B 449, 69 (1995).

    Article  ADS  Google Scholar 

  17. S. P. Moller, CERN Report 94-05.

  18. A. V. Kurilin, Yad. Fiz. 57, 1129 (1994) [Phys. At. Nucl. 57, 1066 (1994)]; Int. J. Mod. Phys. A 9, 4581 (1994).

    Google Scholar 

  19. V. I. Ritus and A. I. Nikishov, Quantum Electrodynamics of Phenomena in Strong Fields, Tr. FIAN SSSR 111 (1979); V. I. Ritus, Zh. Éksp. Teor. Fiz. 56, 986 (1969); V. R. Khalilov, Yu. I. Klimenko, O. S. Pavlova, and É. Yu. Klimenko, Yad. Fiz. 41, 756 (1985) [Sov. J. Nucl. Phys. 41, 482 (1985)].

  20. N. K. Nielsen and P. Olesen, Nucl. Phys. B 144, 376 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  21. A. Salam and J. Strathdee, Nucl. Phys. B 90, 203 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  22. S. G. Matinyan and G. K. Savvidi, Yad. Fiz. 25, 218 (1977) [Sov. J. Nucl. Phys. 25, 118 (1977)]; I. A. Batalin, S. G. Matinyan, and G. K. Savvidi, Yad. Fiz. 26, 407 (1977) [Sov. J. Nucl. Phys. 26, 214 (1977)]; S. G. Matinyan and G. K. Savvidy, Nucl. Phys. B 134, 539 (1978); G. K. Savvidy, Phys. Lett. B 71B, 133 (1977).

    Google Scholar 

  23. V. V. Skalozub, Yad. Fiz. 21, 1337 (1975) [Sov. J. Nucl. Phys. 21, 690 (1975)]; 28, 228 (1978) [Sov. J. Nucl. Phys. 28, 113 (1978)]; 35, 782 (1982) [Sov. J. Nucl. Phys. 35, 453 (1982)].

    Google Scholar 

  24. J. Ambjørn and P. Olesen, Phys. Lett. B 218, 67 (1989); Nucl. Phys. B 315, 606 (1989); 330, 193 (1990).

    ADS  Google Scholar 

  25. A. V. Borisov, V. Ch. Zhukovskii, A. V. Kurilin, and A. I. Ternov, Yad. Fiz. 41, 743 (1985) [Sov. J. Nucl. Phys. 41, 473 (1985)].

    Google Scholar 

  26. V. Ch. Zhukovskii and A. V. Kurilin, Yad. Fiz. 48, 179 (1988) [Sov. J. Nucl. Phys. 48, 114 (1988)].

    Google Scholar 

  27. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965, 1971; Nauka, Moscow, 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Yadernaya Fizika, Vol. 67, No. 11, 2004, pp. 2116–2122.

Original Russian Text Copyright © 2004 by Kurilin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurilin, A.V. Leptonic decays of the W boson in a strong electromagnetic field. Phys. Atom. Nuclei 67, 2095–2100 (2004). https://doi.org/10.1134/1.1825534

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1825534

Keywords

Navigation