Skip to main content
Log in

Salt neutrino detector for ultrahigh-energy neutrinos

  • Rare Processes and Astrophysics
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Rock salt and limestone are studied to determine their suitability for use as a radio-wave transmission medium in an ultrahigh energy (UHE) cosmic neutrino detector. A sensible radio wave would be emitted by the coherent Cherenkov radiation from negative excess charges inside an electromagnetic shower upon interaction of a UHE neutrino in a high-density medium (Askar’yan effect). If the attenuation length for the radio wave in the material is large, a relatively small number of radio-wave sensors could detect the interaction occurring in the massive material. We measured the complex permittivity of the rock salt and limestone by the perturbed cavity resonator method at 9.4 and 1 GHz to good precision. We obtained new results of measurements at the frequency at 1.0 GHz. The measured value of the radio-wave attenuation length of synthetic rock salt samples is 1080 m. The samples from the Hockley salt mine in the United States show attenuation length of 180 m at 1 GHz, and then we estimate it by extrapolation to be as long as 900 m at 200 MHz. The results show that there is a possibility of utilizing natural massive deposits of rock salt for a UHE neutrino detector. A salt neutrino detector with a size of 2×2×2 km would detect 10 UHE neutrino/yr generated through the GZK process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. W. Stecker, C. Done, M. H. Salamon, and P. Sommers, Phys. Rev. Lett. 66, 2697 (1991).

    Article  ADS  Google Scholar 

  2. K. Greisen, Phys. Rev. Lett. 16, 748 (1966); G. T. Zatsepin and V. A. Kuz’min, Pis’ma Zh. Éksp. Teor. Fiz. 4, 114 (1966) [JETP Lett. 4, 78 (1966)].

    Article  ADS  Google Scholar 

  3. R. Gandhi, C. Quigg, M. H. Reno, and I. Sarcevic, Astropart. Phys. 5, 81 (1996); Phys. Rev. D 58, 093009 (1998);G. Sigl, Phys. Rev. D 57, 3786 (1998); J. Kwiecinski, A. D. Martin, and A. M. Stasto, Phys. Rev. D 59, 093002 (1999); R. Horvat, Phys. Lett. B 480, 135 (2000).

    Article  ADS  Google Scholar 

  4. D. Saltzberg, D. Besson, P. Gorham, et al., Proc. SPIE 4858, 191 (2003).

    ADS  Google Scholar 

  5. G. A. Askar’yan, Zh. Éksp. Teor. Fiz. 41, 616 (1961) [Sov. Phys. JETP 14, 441 (1962)]; 48, 988 (1965) [21, 658 (1965)].

    Google Scholar 

  6. M. Fujii and J. Nishimura, in Proceedings of the 11th ICRC, Budapest, 1969, p. 709.

  7. P. Gorham, D. Saltzberg, P. Schoessow, et al., Phys. Rev. E 62, 8590 (2000); D. Saltzberg, P. Gorham, D. Walz, et al., Phys. Rev. Lett. 86, 2802 (2001).

    Article  ADS  Google Scholar 

  8. M. Chiba, T. Kamijo, M. Kawaki, et al., in Proceedings of the 1st International Workshop for Radio Detection of High Energy Particles (RADHEP-2000), AIP Conf. Proc. 579, 204 (2001); T. Kamijo and M. Chiba, Memoirs of Faculty of Technology, Tokyo Metropolitan Univ., No. 51 2001, 139 (2002); M. Chiba et al., in Proceedings of the First NCTS Workshop on Astroparticle Physics, Kenting, Taiwan, 2001 (World Sci., Singapore, 2002), p. 99; T. Kamijo and M. Chiba, Proc. SPIE 4858, 151 (2003).

  9. Topography Dictionary, Ed. by T. Machida et al. (Ninomiya Book, Tokyo, 1981), p. 110 [in Japanese]; J. L. Stanley, Handbook of World Salt Resources (Plenum, New York, 1969); T. H. Michel, Salt Domes (Gulf, Houston, 1979).

    Google Scholar 

  10. H. A. Bethe and J. Schwinger, NDRC Report D1-117 (1943); R. L. Sproull and E. G. Linder, Proc. IRE 34, 305 (1946); J. C. Slater, Rev. Mod. Phys. 18, 441 (1946); G. Birnbaum and J. Franeau, J. Appl. Phys. 20, 817 (1949); N. Ogasawara, J. Inst. Elect. Eng. (Japan) 74, 1486 (1954).

  11. Dielectric Materials and Applications, Ed. by A. R. von Hippel (Wiley, 1954), pp. 302, 361; Landolt-Börnstein, Zahlenwerte und Functionen aus Physik, Chemie, Astronomie, Geophysik und Technik, Eigenschaften der Materie in Ihre Aggregatzustaenden, 6. Teil, Elektrische Eigenshaften I, Ed. by Herausgegeben von K. H. Hellwege und A. M. Hellwege (Springer, 1959), pp. 456, 505; R. G. Breckenbridge, J. Chem. Phys. 16, 959 (1948).

  12. P. Gorham, D. Saltzberg, A. Odian, et al., Nucl. Instrum. Methods Phys. Res. A 490, 476 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Yadernaya Fizika, Vol. 67, No. 11, 2004, pp. 2071–2074.

Original English Text Copyright © 2004 by Chiba, Kamijo, Yasuda, Chikashige, Kon, Takeoka, Yoshida.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiba, M., Kamijo, T., Yasuda, O. et al. Salt neutrino detector for ultrahigh-energy neutrinos. Phys. Atom. Nuclei 67, 2050–2053 (2004). https://doi.org/10.1134/1.1825527

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1825527

Keywords

Navigation