Skip to main content
Log in

The np interaction effects on the double-beta decay nuclear matrix elements for medium-mass nuclei

  • Double-Beta Decay and Rare Processes
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The quality of Hartree-Fock-Bogolyubov wave functions is tested by comparing the theoretically calculated results with the available experimental data for a number of spectroscopic properties like yrast spectra, reduced B(E2) transition probabilities, quadrupole moments, and g factors for the nuclei involved in 2νββ decay. It is observed that the np interactions vis-à-vis the deformations of the intrinsic ground states of medium-mass nuclei play a crucial role in the fine tuning of the nuclear matrix elementsM .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. C. Haxton and G. J. Stephenson, Jr., Prog. Part. Nucl. Phys. 12, 409 (1984).

    Article  ADS  Google Scholar 

  2. M. Doi, T. Kotani, and E. Takasugi, Prog. Theor. Phys. Suppl. 83, 1 (1985).

    Google Scholar 

  3. M. Doi and T. Kotani, Prog. Theor. Phys. Suppl. 87, 5 (1992).

    Google Scholar 

  4. T. Tomoda, Rep. Prog. Phys. 54, 53 (1991); J. D. Vergados, Phys. Rep. 361, 1 (2002); A. S. Barabash, nucl-ex/0203001; J. D. Vergados, Phys. Rep. 133, 1 (1986); A. Faessler, Prog. Part. Nucl. Phys. 21, 183 (1988).

    Article  ADS  Google Scholar 

  5. J. Suhonen and O. Civitarese, Phys. Rep. 300, 123 (1998).

    Article  ADS  Google Scholar 

  6. A. Faessler and F. Simkovic, hep-ph/9901215; J. Phys. G 24, 2139 (1998).

    ADS  Google Scholar 

  7. H. V. Klapdor-Kleingrothaus, hep-ex/9907040; hep-ex/9901021; hep-ex/9802007; Int. J. Mod. Phys. A 13, 3953 (1998).

    ADS  Google Scholar 

  8. E. R. Elliott and P. Vogel, Annu. Rev. Nucl. Part. Sci. 52, 115 (2002).

    Article  ADS  Google Scholar 

  9. E. Cheifetz et al., Phys. Rev. Lett. 25, 38 (1970).

    Article  ADS  Google Scholar 

  10. A. Pandoh, R. Devi, and S. K. Khosa, Phys. Rev. C 60, 047302 (1999).

    Google Scholar 

  11. Arun Bharti and S. K. Khosa, Nucl. Phys. A 572, 317 (1994).

    ADS  Google Scholar 

  12. S. K. Khosa, P. N. Tripathi, and S. K. Sharma, Phys. Lett. B 119B, 257 (1982).

    ADS  Google Scholar 

  13. S. K. Sharma, G. Mukherjee, and P. K. Rath, Phys. Rev. C 41, 1315 (1990).

    Article  ADS  Google Scholar 

  14. P. Federman and S. Pittel, Phys. Lett. B 77B, 29 (1978); P. Federman, S. Pittel, and R. Campos, Phys. Lett. B 82B, 9 (1979).

    ADS  Google Scholar 

  15. A. J. Singh and P. K. Raina, Phys. Rev. C 52, R2342 (1995).

  16. B. M. Dixit, P. K. Rath, and P. K. Raina, Phys. Rev. C 65, 034311 (2002); 67, 059901 (2003); K. Chaturvedi, B. M. Dixit, P. K. Rath, and P. K. Raina, Phys. Rev. C 67, 064317 (2003).

  17. M. Baranger and K. Kumar, Nucl. Phys. A 110, 490 (1968).

    ADS  Google Scholar 

  18. G. M. Heestand, R. R. Borchers, B. Herskind, et al., Nucl. Phys. A 133, 310 (1969).

    ADS  Google Scholar 

  19. W. Greiner, Nucl. Phys. 80, 417 (1966).

    Google Scholar 

  20. A. Arima, Nucl. Phys. A 354, 19 (1981).

    ADS  Google Scholar 

  21. M. Sakai, At. Data Nucl. Data Tables 31, 400 (1984).

    Article  ADS  Google Scholar 

  22. A. De Silva, M. K. Moe, M. A. Nelson, and M. A. Vient, Phys. Rev. C 56, 2451 (1997).

    ADS  Google Scholar 

  23. D. Dassie et al. (NEMO Collab.), Phys. Rev. D 51, 2090 (1995).

    ADS  Google Scholar 

  24. S. Stoica, Phys. Lett. B 350, 152 (1995).

    ADS  Google Scholar 

  25. J. G. Hirsch, O. Castanos, P. O. Hess, and O. Civitarese, Phys. Rev. C 51, 2252 (1995).

    Article  ADS  Google Scholar 

  26. J. Suhonen and O. Civitarese, Phys. Rev. C 49, 3055 (1994).

    Article  ADS  Google Scholar 

  27. P. Belli et al., Astropart. Phys. 10, 115 (1999).

    Article  ADS  Google Scholar 

  28. A. S. Barabash et al., Nucl. Phys. A 604, 115 (1996).

    ADS  Google Scholar 

  29. F. A. Danevich et al., Z. Phys. A 355, 433 (1996).

    Article  Google Scholar 

  30. A. Sh. Georgadze et al., Yad. Fiz. 58, 1170 (1995) [Phys. At. Nucl. 58, 1093 (1995)].

    Google Scholar 

  31. A. Shukla, P. K. Raina, R. Chandra, and P. K. Rath (in press).

  32. J. Suhonen and O. Civitarese, Phys. Lett. B 497, 221 (2001).

    ADS  Google Scholar 

  33. O. A. Rumyantsev and M. G. Urin, Phys. Lett. B 443, 51 (1998).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Yadernaya Fizika, Vol. 67, No. 11, 2004, pp. 2043–2047.

Original English Text Copyright © 2004 by Raina, Shukla, Rath, Dixit, Chaturverdi, Chandra, Dhiman, Singh.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raina, P.K., Shukla, A., Rath, P.K. et al. The np interaction effects on the double-beta decay nuclear matrix elements for medium-mass nuclei. Phys. Atom. Nuclei 67, 2021–2026 (2004). https://doi.org/10.1134/1.1825522

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1825522

Keywords

Navigation