Skip to main content
Log in

CAMEO project and discovery potential of the future 2β-decay experiments

  • Double-Beta Decay and Rare Processes
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The demands on the future supersensitivity 2β-decay experiments (aiming to observe neutrinoless 2β decay or to advance restrictions on the neutrino mass to m ν≤0.01 eV) are considered and requirements for their discovery potential are formulated. The most realistic 2β projects are reviewed and the conclusion is obtained that only several of them with high energy resolution would completely satisfy these severe demands and requirements. At the same time, most of the recent projects (CAMEO, CUORE, DCBA, EXO, etc.) could certainly advance the limit on the neutrino mass up to m ν≤0.05 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Fukuda et al. (Super-Kamiokande Collab.), Phys. Rev. Lett. 86, 5651 (2001).

    ADS  Google Scholar 

  2. Q. R. Ahmad et al. (SNO Collab.), Phys. Rev. Lett. 89, 011301 (2002).

  3. K. Eguchi et al. (KamLAND Collab.), Phys. Rev. Lett. 90, 021802 (2003).

    Google Scholar 

  4. M. H. Ahn et al., Phys. Rev. Lett. 90, 041801 (2003).

  5. J. D. Vergados, Phys. Rep. 361, 1 (2002).

    Article  ADS  Google Scholar 

  6. Yu. G. Zdesenko, Rev. Mod. Phys. 74, 663 (2002).

    Article  ADS  Google Scholar 

  7. S. R. Elliot and P. Vogel, Annu. Rev. Nucl. Part. Sci. 52, 115 (2002).

    ADS  Google Scholar 

  8. J. Schechter and J. W. F. Valle, Phys. Rev. D 25, 2951 (1982).

    ADS  Google Scholar 

  9. V. I. Tretyak and Yu. G. Zdesenko, At. Data Nucl. Data Tables 80, 83 (2002).

    Article  ADS  Google Scholar 

  10. F. A. Danevich et al., Phys. Rev. C 62, 045501 (2000); 68, 035501 (2003).

  11. C. Arnaboldi et al., Phys. Lett. B 557, 167 (2003).

    ADS  Google Scholar 

  12. R. Luescher et al., Phys. Lett. B 434, 407 (1998).

    ADS  Google Scholar 

  13. H. V. Klapdor-Kleingrothaus et al., Eur. Phys. J. A 12, 147 (2001).

    Article  ADS  Google Scholar 

  14. C. E. Aalseth et al., Phys. Rev. C 59, 2108 (1999); Phys. Rev. D 65, 092007 (2002).

    Article  ADS  Google Scholar 

  15. A. Staudt et al., Europhys. Lett. 13, 31 (1990).

    ADS  Google Scholar 

  16. Yu. G. Zdesenko et al., Phys. Lett. B 546, 206 (2002).

    ADS  Google Scholar 

  17. L. Simard (NEMO Collab.), Nucl. Phys. B (Proc. Suppl.) 110, 372 (2002); A.-I. Etienvre, hep-ex/0306027 (2003).

    ADS  Google Scholar 

  18. G. Gervasio (CUORE Collab.), Nucl. Phys. A 663&664, 873 (2000); CUORE Collab., hep-ex/0302021 (2003).

    Google Scholar 

  19. A. Faessler and F. Simkovic, J. Phys. G 24, 2139 (1998).

    ADS  Google Scholar 

  20. J. Suhonen and O. Civitarese, Phys. Rep. 300, 123 (1998).

    Article  ADS  Google Scholar 

  21. P. Vogel, in Current Aspects of Neutrino Physics, Ed. by D. O. Caldwell (Springer, Berlin, 2001), p. 177.

    Google Scholar 

  22. E. Fiorini et al., Lett. Nuovo Cimento 3, 149 (1970).

    Google Scholar 

  23. M. Doi, T. Kotani, and E. Takasugi, Prog. Theor. Phys. Suppl. 83, 1 (1985).

    Google Scholar 

  24. G. Audi and A. H. Wapstra, Nucl. Phys. A 595, 409 (1995).

    ADS  Google Scholar 

  25. K. J. R. Rosman and P. D. P. Taylor, Pure Appl. Chem. 70, 217 (1998).

    Google Scholar 

  26. A. A. Artyukhov et al., Yad. Fiz. 61, 1336 (1998) [Phys. At. Nucl. 61, 1236 (1998)].

    Google Scholar 

  27. V. I. Tretyak and Yu. G. Zdesenko, At. Data Nucl. Data Tables 61, 43 (1995).

    Article  ADS  Google Scholar 

  28. M. Doi et al., Prog. Theor. Phys. 66, 1739 (1981).

    ADS  Google Scholar 

  29. J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics, 7th ed. (Wiley, New York, 1963).

    Google Scholar 

  30. H. Ejiri et al., Phys. Rev. Lett. 85, 2917 (2000).

    Article  ADS  Google Scholar 

  31. Y. Suzuki, in Proceedings of the International Workshop on Low-Energy Solar Neutrinos, LowNu2, Tokyo, Japan, 2000, Ed. by Y. Suzuki (World Sci., Singapore, 2001).

    Google Scholar 

  32. A. Sh. Georgadze et al., in Proceedings of the International Workshop on Technique and Application of Xenon Detectors, Tokyo, Japan, 2001 (World Sci., Singapore, 2002), p. 144.

    Google Scholar 

  33. N. Ishihara et al., Nucl. Instrum. Methods Phys. Res. A 373, 325 (1996); 443, 101 (2000).

    Article  ADS  Google Scholar 

  34. F. A. Danevich et al., Nucl. Phys. A 694, 375 (2001).

    ADS  Google Scholar 

  35. M. K. Moe, Phys. Rev. C 44, 931 (1991).

    Article  ADS  Google Scholar 

  36. M. Miyajima et al., KEK Proc. 91(5), 19 (1991).

    Google Scholar 

  37. M. Danilov et al., Phys. Lett. B 480, 12 (2000).

    ADS  Google Scholar 

  38. C. E. Aalseth et al., hep-ex/0201021; C. E. Aalseth and H. S. Miley, Nucl. Phys. B (Proc. Suppl.) 110, 392 (2002).

    ADS  Google Scholar 

  39. H. V. Klapdor-Kleingrothaus et al., J. Phys. G 24, 483 (1998).

    Article  ADS  Google Scholar 

  40. O. A. Ponkratenko, V. I. Tretyak, and Yu. G. Zdesenko, in Proceedings of the International Conference on Dark Matter in Astro-and Particle Physics, Heidelberg, Germany, 1998, Ed. by H. V. Klapdor-Kleingrothaus and L. Baudis (IOP, Bristol, 1999), p. 738.

    Google Scholar 

  41. Yu. G. Zdesenko et al., J. Phys. G 27, 2129 (2001).

    Article  ADS  Google Scholar 

  42. G. Bellini et al., Phys. Lett. B 493, 216 (2000).

    Google Scholar 

  43. F. A. Danevich et al., Pis’ma Zh. Éksp. Teor. Fiz. 76, 417 (1989) [JETP Lett. 49, 476 (1989)].

    Google Scholar 

  44. T. Fazzini et al., Nucl. Instrum. Methods Phys. Res. A 410, 213 (1998).

    Article  Google Scholar 

  45. G. Alimonti et al., Nucl. Instrum. Methods Phys. Res. A 406, 411 (1998).

    Article  ADS  Google Scholar 

  46. R. Brun et al., CERN Program Library Long Write-up W5013 (CERN, 1994).

  47. O. A. Ponkratenko et al., Phys. At. Nucl. 63, 1282 (2000).

    Article  Google Scholar 

  48. A. Alessandrello et al., Nucl. Phys. B (Proc. Suppl.) 35, 394 (1994).

    ADS  Google Scholar 

  49. S. Cebrian et al., Phys. Lett. B 563, 48 (2003).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Yadernaya Fizika, Vol. 67, No. 11, 2004, pp. 1998–2007.

Original English Text Copyright © 2004 by Zdesenko, Danevich, Tretyak.

This article was submitted by the authors in English.

Deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zdesenko, Y.G., Danevich, F.A. & Tretyak, V.I. CAMEO project and discovery potential of the future 2β-decay experiments. Phys. Atom. Nuclei 67, 1974–1983 (2004). https://doi.org/10.1134/1.1825515

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1825515

Keywords

Navigation