Skip to main content
Log in

Linear and nonlinear optical spectroscopy of gadolinium iron borate GdFe3(BO3)4

  • Atoms, Spectra, Radiations
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The optical spectra and the second-harmonic generation (SHG) are studied in a noncentrosymmetric GdFe3(BO3)4 magnet. In the region of weak absorption (α∼20–400 cm−1) below ∼3 eV, three absorption bands are distinguished, which can be unambiguously assigned to forbidden electronic transitions from the ground 6 A 1 state of the Fe3+ ion to its excited states 4 T 1(∼1.4 eV), 4 T 2(∼2 eV), and 4 A 1, 4 E(∼2.8 eV). Intense absorption begins in the region above 3 eV (α∼2–4×105 cm−1), where two bands at ∼4.0 and 4.8 eV are observed, which are caused by allowed electric dipole charge-transfer transitions. The spectral features of SHG in the 1.2–3.0-eV region are explained by a change in the SHG efficiency caused by a change in the phase mismatch. It is shown that in the weak absorption region, phase matching can be achieved for SHG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Magnetoelectric Interaction Phenomena in Crystals, Ed. by A. J. Freeman and H. Schmid (Gordon and Breach, London, 1975).

    Google Scholar 

  2. G. A. Smolenskii and I. E. Chupis, Usp. Fiz. Nauk 137, 415 (1982) [Sov. Phys. Usp. 25, 475 (1982)].

    Google Scholar 

  3. R. R. Birss, Symmetry and Magnetism (North-Holland, Amsterdam, 2000).

    Google Scholar 

  4. H. Schmid, Magnetoelectric Effects in Insulating Magnetic Materials, reprinted from Introduction to Complex Mediums for Optics and Electromagnetics, Ed. by W. S. Weigloger and A. Lakhtakia (SPIE Press, Bellingham, WA, 2003).

    Google Scholar 

  5. M. Fiebig, C. Degenhardt, and R. V. Pisarev, Phys. Rev. Lett. 88, 027203 (2002).

    Google Scholar 

  6. T. Kimura, T. Goto, H. Shintani, et al., Nature 429, 392 (2004).

    Google Scholar 

  7. J. Wang, J. B. Neaton, H. Zheng, et al., Science 299, 1719 (2003).

    ADS  Google Scholar 

  8. Th. Lottermoser, Th. Lonkai, U. Amman, et al., Nature 430, 541 (2004).

    Article  ADS  Google Scholar 

  9. G. Srinivasan, E. T. Rasmussen, B. J. Levin, and R. Hayes, Phys. Rev. B 65, 134402 (2002).

    Google Scholar 

  10. C. W. Nan, L. Lin, N. Cai, et al., Appl. Phys. Lett. 81, 3831 (2002).

    Article  ADS  Google Scholar 

  11. J. A. Campá, C. Cascales, E. Guitiérres-Puebla, et al., Chem. Mater. 9, 237 (1997).

    Google Scholar 

  12. Y. Hinatsu, Y. Doi, K. Ito, et al., J. Solid State Chem. 172, 438 (2003).

    Article  ADS  Google Scholar 

  13. A. D. Balaev, L. N. Bezmaternykh, I. A. Gudim, et al., J. Magn. Magn. Mater. 258–259, 532 (2003).

    Google Scholar 

  14. R. Z. Levitin, E. A. Popova, R. M. Chtsherbov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 79, 531 (2004) [JETP Lett. 79, 423 (2004)].

    Google Scholar 

  15. R. W. Boyd, Nonlinear Optics (Academic, San Diego, 1992).

    Google Scholar 

  16. M. Fiebig, V. V. Pavlov, and R. V. Pisarev, J. Opt. Soc. Am. B (in press).

  17. M. Fiebig, D. Fröhlich, St. Leute, and R. V. Pisarev, Appl. Phys. B 66, 265 (1998).

    Article  ADS  Google Scholar 

  18. A. B. P. Lever, Inorganic Electronic Spectoscopy, 2nd ed. (Elsevier, Amsterdam, 1984).

    Google Scholar 

  19. Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology (Springer, Berlin, 1993), Group III, Vol. 27h.

  20. M. Marezio, J. P. Remeika, and P. D. Derneir, Acta Crystallogr. B 26, 2008 (1970).

    Google Scholar 

  21. A. I. Likhtenshtein, A. S. Moskvin, and V. A. Gubanov, Fiz. Tverd. Tela (Leningrad) 24, 3596 (1982) [Sov. Phys. Solid State 24, 2049 (1982)].

    Google Scholar 

  22. Handbook on Physical Constants, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Énergoatomizdat, Moscow, 1991; CRC, Boca Raton, 1997).

    Google Scholar 

  23. A. V. Malakhovskii and I. S. Edelman, Phys. Status Solidi B 74, K145 (1976).

    Google Scholar 

  24. F. J. Kahn, P. S. Pershan, and J. P. Remeika, Phys. Rev. 186, 891 (1969).

    Article  ADS  Google Scholar 

  25. P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, Phys. Rev. Lett. 8, 21 (1962).

    Article  ADS  Google Scholar 

  26. J. Jerphagnon and S. K. Kurtz, J. Appl. Phys. 41, 1667 (1970).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 80, No. 5, 2004, pp. 339–343.

Original Russian Text Copyright © 2004 by Kalashnikova, Pavlov, Pisarev, Bezmaternykh, Bayer, Rasing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalashnikova, A.M., Pavlov, V.V., Pisarev, R.V. et al. Linear and nonlinear optical spectroscopy of gadolinium iron borate GdFe3(BO3)4 . Jetp Lett. 80, 293–297 (2004). https://doi.org/10.1134/1.1825108

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1825108

PACS numbers

Navigation