Skip to main content
Log in

Anticlinic-synclinic transitions in superthin free-standing smectic films

  • Condensed Matter
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

Anticlinic-synclinic transition was studied in superthin smectic films using polarized light reflected microscopy. The measurements were made in a compound exhibiting the mC * FI1 subphase in a narrow temperature interval between antiferroelectric C *A and ferroelectric SmC* phases. In films, we observed series of transitions with numbers increasing with increasing film thickness. Surface ordering leads to increasing transition temperatures with decreasing film thickness and to change of orientation of the molecular tilt plane in layers. Succession of transitions results from competition between the surface and the bulk ordering. We found that line string defects may form in a film, their orientation and collective behavior resulting from elastic deformation of molecular ordering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. H. de Jeu, B. I. Ostrovskii, and A. N. Shalaginov, Rev. Mod. Phys. 75, 181 (2003).

    ADS  Google Scholar 

  2. R. B. Meyer, L. Liébert, L. Strzecki, and P. Keller, J. Phys. Lett. 36, L69 (1975).

    Google Scholar 

  3. A. D. L. Chandani, E. Gorecka, Y. Ouchi, et al., Jpn. J. Appl. Phys., Part 2 28, L1265 (1989).

  4. A. Fukuda, Y. Takanishi, T. Isozaki, et al., J. Mater. Chem. 4, 997 (1994).

    Article  Google Scholar 

  5. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon Press, Oxford, 1993; Mir, Moscow, 1982).

    Google Scholar 

  6. D. Ronis and C. Rosenblatt, Phys. Rev. A 21, 1687 (1980).

    Article  ADS  Google Scholar 

  7. R. Hołist, Phys. Rev. A 44, 3692 (1991).

    ADS  Google Scholar 

  8. S. Henekamp, R. A. Pelcovits, E. Fontes, et al., Phys. Rev. Lett. 52, 1017 (1984).

    ADS  Google Scholar 

  9. Ch. Bahr and D. Fliegner, Phys. Rev. Lett. 70, 1842 (1993).

    Article  ADS  Google Scholar 

  10. D. R. Link, J. E. Maclennan, and N. A. Clark, Phys. Rev. Lett. 77, 2237 (1996).

    Article  ADS  Google Scholar 

  11. D. R. Link, G. Natale, N. A. Clark, et al., Phys. Rev. Lett. 82, 2508 (1999).

    Article  ADS  Google Scholar 

  12. C. Y. Chao, C. R. Lo, P. J. Wu, et al., Phys. Rev. Lett. 86, 4048 (2001).

    Article  ADS  Google Scholar 

  13. P. Mach, R. Pindak, A.-M. Levelut, et al., Phys. Rev. Lett. 81, 1015 (1998).

    Article  ADS  Google Scholar 

  14. P. Mach, R. Pindak, A.-M. Levelut, et al., Phys. Rev. E 60, 6793 (1999).

    Article  ADS  Google Scholar 

  15. P. M. Johnson, D. A. Olson, S. Pankratz, et al., Phys. Rev. Lett. 84, 4870 (2000).

    ADS  Google Scholar 

  16. E. Gorecka, D. Pociecha, M. Čepič, et al., Phys. Rev. E 65, 061703 (2002).

  17. P. V. Dolganov, V. M. Zhilin, V. E. Dmitrienko, and E. I. Kats, Pis’ma Zh. Éksp. Teor. Fiz. 76, 579 (2002) [JETP Lett. 76, 498 (2002)].

    Google Scholar 

  18. P. V. Dolganov, V. M. Zhilin, V. K. Dolganov, and E. I. Kats, Phys. Rev. E 67, 041 716 (2003).

    Google Scholar 

  19. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980; Nauka, Moscow, 1973).

    Google Scholar 

  20. P. V. Dolganov and B. M. Bolotin, Pis’ma Zh. Éksp. Teor. Fiz. 77, 503 (2003) [JETP Lett. 77, 429 (2003)].

    Google Scholar 

  21. Ch. Bahr and D. Fliegner, Phys. Rev. A 46, 7657 (1992).

    Article  ADS  Google Scholar 

  22. P. O. Andreeva, V. K. Dolganov, C. Gors, et al., Phys. Rev. E 59, 4143 (1999).

    Article  ADS  Google Scholar 

  23. D. Schlauf, Ch. Bahr, V. K. Dolganov, and J. W. Goodby, Eur. Phys. J. B 9, 461 (1999).

    Article  ADS  Google Scholar 

  24. P. M. Johnson, D. A. Olson, S. Pankratz, et al., Phys. Rev. E 62, 8106 (2000).

    ADS  Google Scholar 

  25. S. M. Amador and P. S. Pershan, Phys. Rev. A 41, 4326 (1990).

    Article  ADS  Google Scholar 

  26. M. Čepicč and B. Zekš, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 263, 61 (1995).

    Google Scholar 

  27. B. Rovšek, M. Čepič, and B. Zekš, Phys. Rev. E 62, 3758 (2000).

    ADS  Google Scholar 

  28. D. A. Olson, X. F. Han, A. Cady, and C. C. Huang, Phys. Rev. E 66, 021702 (2002).

    Google Scholar 

  29. J. Pang, C. D. Muzny, and N. A. Clark, Phys. Rev. Lett. 69, 2783 (1992).

    Article  ADS  Google Scholar 

  30. P. Cluzeau, G. Joly, H. T. Nguyen, et al., Phys. Rev. E 62, R5899 (2000).

  31. D. Pettey, T. C. Lubensky, and D. Link, Liq. Cryst. 25, 5 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 80, No. 4, 2004, pp. 311–315.

Original English Text Copyright © 2004 by P. Dolganov, Joly, Cluzeau, V. Dolganov, Gors, Nguyen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolganov, P.V., Joly, G., Cluzeau, P. et al. Anticlinic-synclinic transitions in superthin free-standing smectic films. Jetp Lett. 80, 280–284 (2004). https://doi.org/10.1134/1.1813687

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1813687

PACS numbers

Navigation