Skip to main content
Log in

Diagnostics of heterogeneous processes with the participation of radicals by time-resolved actinometry

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A method is proposed for measuring the probabilities of the heterogeneous loss of radicals in a gasdischarge plasma. The method is based on the time-resolved modulation actinometry. It is shown that this method is applicable for O, H, F, and CF2 radicals. The probabilities of the loss of these radicals on the discharge tube wall are measured in a dc glow discharge. It is shown that the measurement results do not depend on which radical’s emission line is used. The measurement results are only slightly affected by the dissociative excitation of the radical’s emitting states and the background emission from the plasma. It is shown that the technique proposed is similar to the method of laser-induced fluorescence and provides a fairly high accuracy when measuring the probabilities (up to γ R∼10−2–10−1) of the surface loss of radicals in a gas-discharge plasma. In contrast to the LIF method, this technique allows one to acquire a large amount of experimental data over a reasonable time interval (up to one thousand of γ R measurements per hour). This feature is an important and necessary condition for a thorough study of the surface reactions and the complicated many-parametrical mechanism for the heterogeneous loss of radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. P. Woodruff and T. A. Delchar, Modern Techniques of Surface Science (Cambridge Univ. Press, 1986; Mir, Moscow, 1989).

  2. J. Amorim, G. Baravian, and J. Jolly, J. Phys. D 33, R51 (2000).

    Article  ADS  Google Scholar 

  3. H. F. Dobele, U. Czarnetzki, and A. Goehlich, Plasma Sources Sci. Technol. 9, 477 (2000).

    ADS  Google Scholar 

  4. M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, J. Chem. Soc., Faraday Trans. 94, 337 (1998).

    Article  Google Scholar 

  5. M. Haverlag, E. Stoffels, W. W. Stoffels, et al., Sci. Technol. A 12, 3102 (1994).

    ADS  Google Scholar 

  6. V. V. Ivanov, K. S. Klopovskii, D. V. Lopaev, et al., Fiz. Plazmy 26, 1046 (2000) [Plasma Phys. Rep. 26, 980 (2000)].

    Google Scholar 

  7. V. V. Ivanov, K. S. Klopovskii, D. V. Lopaev, et al., Fiz. Plazmy 26, 1038 (2000) [Plasma Phys. Rep. 26, 972 (2000)].

    Google Scholar 

  8. D. Pagnon, J. Amorim, J. Nahorny, et al., J. Phys. D 28, 1856 (1995).

    Article  ADS  Google Scholar 

  9. V. V. Ivanov, K. S. Klopovskiy, D. V. Lopaev, et al., IEEE Trans. Plasma Sci. 27, 1279 (1999).

    Article  Google Scholar 

  10. V. A. Feoktistov, V. V. Ivanov, A. M. Popov, et al., J. Phys. D 30, 423 (1997).

    Article  ADS  Google Scholar 

  11. Y. C. Kimm and M. Boudart, Langmuir 7, 2999 (1991).

    Google Scholar 

  12. L. Magne, H. Coitout, G. Cernogora, and G. Gousset, J. Phys. III France 3, 1871 (1993).

    Article  Google Scholar 

  13. G. Cartry, L. Magne, and G. Cernogora, J. Phys. D 32, L53 (1999).

    Article  ADS  Google Scholar 

  14. G. Cartry, L. Magne, and G. Cernogora, J. Phys. D 33, 1303 (2000).

    Article  ADS  Google Scholar 

  15. A. Rousseau, G. Cartry, and X. Duten, J. Appl. Phys. 89, 2074 (2001).

    Article  ADS  Google Scholar 

  16. J. Amorim, J. Loureiro, G. Baravian, and M. Touzeau, J. Appl. Phys. 82, 2795 (1997).

    Article  ADS  Google Scholar 

  17. A. D. Tserepi and T. A. Miller, J. Appl. Phys. 75, 7231 (1994).

    Article  ADS  Google Scholar 

  18. B. Gordiets, C. M. Ferrera, M. J. Pinheiro, and A. Ricard, Plasma Sources Sci. Technol. 7, 379 (1998).

    ADS  Google Scholar 

  19. C. M. Ferreira, E. Tatarova, V. Guerra, et al., in Selected Research Papers on Spectroscopy of Nonequilibrium Plasma at Elevated Pressures, Ed. by V. N. Ochkin (SPIE, Washington, 2002), p. 99.

    Google Scholar 

  20. J. Henriques, E. Tatarova, F. M. Dias, and C. M. Ferreira, J. Appl. Phys. 91, 5632 (2002).

    Google Scholar 

  21. J. Luque, E. A. Hudson, and J.-P. Booth, J. Chem. Phys. 118, 622 (2003).

    ADS  Google Scholar 

  22. J. Luque, E. A. Hudson, J.-P. Booth, and I. D. Petsalakis, J. Chem. Phys. 118, 1206 (2003).

    ADS  Google Scholar 

  23. M. Suto and N. Washida, J. Chem. Phys. 78, 1007 (1983).

    ADS  Google Scholar 

  24. M. Suto and N. Washida, J. Chem. Phys. 78, 1012 (1983).

    ADS  Google Scholar 

  25. M. Suto, M. Washida, H. Akimoto, and M. Nakamura, J. Chem. Phys. 78, 1019 (1983).

    ADS  Google Scholar 

  26. N. Washida, M. Suto, S. Nagase, et al., J. Chem. Phys. 78, 1025 (1983).

    ADS  Google Scholar 

  27. C. Larrieu, M. Chaillet, and A. Dargelos, J. Chem. Phys. 96, 3732 (1992).

    Article  ADS  Google Scholar 

  28. S. Koda, Chem. Phys. Lett. 55, 353 (1978).

    Article  ADS  Google Scholar 

  29. Z.-L. Cai, J. Phys. Chem. 97, 8399 (1993).

    Google Scholar 

  30. Q.-T. Trung, G. Durocher, P. Sauvagear, and C. Sandorfy, Chem. Phys. Lett. 47, 404 (1977).

    ADS  Google Scholar 

  31. V. V. Ivanov, K. S. Klopovskii, D. V. Lopaev, et al., Fiz. Plazmy 28, 257 (2002) [Plasma Phys. Rep. 28, 229 (2002)].

    Google Scholar 

  32. V. V. Ivanov, K. S. Klopovskii, D. V. Lopaev, et al., Fiz. Plazmy 28, 272 (2002) [Plasma Phys. Rep. 28, 243 (2002)].

    Google Scholar 

  33. A. D. Tserepi, J. Derouard, J.-P. Booth, and N. Sadeghi, J. Appl. Phys. 81, 2124 (1997).

    Article  ADS  Google Scholar 

  34. T. Arai, M. Goto, K. Horikoshi, et al., Jpn. J. Appl. Phys. 38, 4377 (1999).

    Article  Google Scholar 

  35. C. Suzuki, K. Sasaki, and K. Kadota, Jpn. J. Appl. Phys. 36, L824 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Plazmy, Vol. 30, No. 10, 2004, pp. 948–960.

Original Russian Text Copyright © 2004 by Lopaev, Smirnov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopaev, D.V., Smirnov, A.V. Diagnostics of heterogeneous processes with the participation of radicals by time-resolved actinometry. Plasma Phys. Rep. 30, 882–893 (2004). https://doi.org/10.1134/1.1809405

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1809405

Keywords

Navigation