Skip to main content
Log in

Pseudogap behavior of nuclear spin relaxation in high-T c superconductors in terms of phase separation

  • Condensed Matter
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

We analyze anew experiments on the NMR in cuprates and find an important information on their phase separation and its strip character hidden in the dependence of 1/63 T 1 on the degree of doping. In a broad class of materials, 1/63 T 1 is the sum of two terms: the temperature-independent one attributed to “ incommensurate” strips that occur at external doping and a “universal” temperature-dependent term ascribed to moving metallic and antiferromagnetic subphases. We argue that the frustrated first-order phase transition in a broad temperature interval bears a dynamical character.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. P. Gor’kov and A. V. Sokol, JETP Lett. 46, 420 (1987).

    ADS  Google Scholar 

  2. J. E. Hirsch et al., Phys. Rev. B 39, 243 (1989).

    ADS  Google Scholar 

  3. J._ Zaanen et al., Phys. Rev. B 40, 7391 (1989).

    ADS  Google Scholar 

  4. V. J. Emery et al., Phys. Rev. Lett. 64, 475 (1990).

    Article  ADS  Google Scholar 

  5. M. Grilli et al., Phys. Rev. Lett. 67, 259 (1991).

    Article  ADS  Google Scholar 

  6. T. Egami and S. J. L. Billinge, in Physical Properties of High-Temperature Superconductors V, Ed. by D. M. Ginsberg (World Sci., Singapore, 1996), p. 265.

    Google Scholar 

  7. S. H. Pan et al., Nature 413, 282 (2001).

    Article  ADS  Google Scholar 

  8. C. Howald et al., Phys. Rev. B 67, 014533 (2003).

  9. M. I. Salkola et al., Phys. Rev. Lett. 77, 155 (1996); R. S. Markiewicz et al., Phys. Rev. B 65, 064520 (2002).

    ADS  Google Scholar 

  10. J. M. Tranquada et al., Nature 375, 561 (1995).

    Article  ADS  Google Scholar 

  11. T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 (1999).

    Article  ADS  Google Scholar 

  12. J. L. Tallon and J. M. Loram, Physica C (Amsterdam) 349, 53 (2001).

    ADS  Google Scholar 

  13. L. P. Gor’kov, J. Supercond. 14, 365 (2001).

    Google Scholar 

  14. S. Chakravarty et al., Phys. Rev. B 63, 094503 (2001).

  15. A. Kaminsky et al., Nature 416, 610 (2002).

    ADS  Google Scholar 

  16. G. Teitel’baum et al., Phys. Rev. Lett. 84, 2949 (2000).

    ADS  Google Scholar 

  17. G. Teitel’baum et al., Phys. Rev. B 63, 020507 (2001).

  18. S. Uchida et al., Physica C (Amsterdam) 162–164, 1677 (1989).

    Google Scholar 

  19. T. Nishikawa et al., J. Phys. Soc. Jpn. 62, 2568 (1993).

    Article  Google Scholar 

  20. F. Balakirev et al., Nature 424, 912 (2003).

    Article  ADS  Google Scholar 

  21. G. V. M. Williams et al., Phys. Rev. B 58, 15053 (1998).

  22. J. Schmalian et al., Phys. Rev. B 60, 667 (1999).

    Article  ADS  Google Scholar 

  23. S. Oshugi et al., J. Phys. Soc. Jpn. 63, 700 (1994).

    Google Scholar 

  24. T. Imai et al., Phys. Rev. Lett. 70, 1002 (1993).

    Article  ADS  Google Scholar 

  25. P. M. Singer et al., Phys. Rev. Lett. 88, 187601 (2002).

  26. M. Takigawa et al., Phys. Rev. B 43, 247 (1991).

    Article  ADS  Google Scholar 

  27. R. E. Walstedt et al., Phys. Rev. B 44, 7760 (1991).

    Article  ADS  Google Scholar 

  28. S. W. Cheong et al., Phys. Rev. Lett. 67, 1791 (1991); H. A. Mook et al., Nature 395, 580 (1998); M. Arai et al., Phys. Rev. Lett. 83, 608 (1999); A. Bianconi, Int. J. Mod. Phys. B 14, 3289 (2000); P. Dai et al., Phys. Rev. B 63, 054525 (2001).

    Article  ADS  Google Scholar 

  29. V. Barzykin et al., Phys. Rev. B 50, 16052 (1994).

  30. M. K. Crawford et al., Phys. Rev. B 44, 7749 (1991).

    Article  ADS  Google Scholar 

  31. J. M. Tranquada et al., Phys. Rev. Lett. 78, 338 (1997).

    Article  ADS  Google Scholar 

  32. J. M. Tranquada et al., Phys. Rev. B 54, 7489 (1996).

    Google Scholar 

  33. J. M. Tranquada et al., Phys. Rev. B 59, 14712 (1999).

  34. M. Fujita et al., Phys. Rev. B 65, 064505 (1991).

  35. B. Lake et al., Nature 415, 299 (2002).

    Article  ADS  Google Scholar 

  36. Ch. Niedermayer et al., Phys. Rev. Lett. 80, 3843 (1998).

    Article  ADS  Google Scholar 

  37. K. Yamada et al., Phys. Rev. B 57, 6165 (1998).

    Article  ADS  Google Scholar 

  38. H. Aeppli et al., Science 278, 1432 (1997).

    Article  ADS  Google Scholar 

  39. Y. Zha et al., Phys. Rev. B 54, 7561 (1996).

    Article  ADS  Google Scholar 

  40. D. Rubio Temprano et al., Phys. Rev. Lett. 84, 1990 (2000).

    Article  ADS  Google Scholar 

  41. C. M. Varma et al., Phys. Rev. Lett. 63, 1996 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 80, No. 3, 2004, pp. 221–225.

Original English Text Copyright © 2004 by Gor’kov, Teitel’baum.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gor’kov, L.P., Teitel’baum, G.B. Pseudogap behavior of nuclear spin relaxation in high-T c superconductors in terms of phase separation. Jetp Lett. 80, 195–199 (2004). https://doi.org/10.1134/1.1808849

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1808849

PACS numbers

Navigation