Skip to main content
Log in

Dynamics and spectra of excited states of water-micellar suspensions of single-walled carbon nanotubes

  • Condensed Matter
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

The dynamics of the photoinduced differential absorption and excited-state bleaching spectra of single-walled carbon nanotubes suspended in a micellar solution were studied in the spectral range from 40 to 1000 nm within a time interval from 70 fs to 150 ps under excitation by 50-fs pulses with photon energies 2 and 4 eV. The bleaching and absorption bands were observed in the spectra; the positions of the bleaching peaks were independent of the photon energy of the exciting femtosecond pulse in the range 2–4 eV. It was established that, for delay times shorter than 1 ps, the shape of the differential spectrum of excited nanotubes coincided with the shape of the second derivative of the absorption spectrum of unexcited nanotubes in the frequency range of exciting pulse above 18000 cm−1 (the range of absorption bands of metallic nanotubes). In the frequency range below 16000 cm−1 (the range of absorption peaks of semiconducting nanotubes), the bleaching peaks in the differential spectrum of excited nanotubes undergo a high-frequency shift of 200–300 cm−1 with respect to the second-derivative spectrum of unexcited nanotubes. The excited-state relaxation rate constants were measured. They are well approximated by the exponential dependences and depend on the probe-pulse wavelength. An assumption was made about the nature of the observed spectra of excited nanotubes and about the excitation relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Akimov, M. V. Alfimov, S. O. Konorov, et al., Laser Phys. 13, 1279 (2003).

    Google Scholar 

  2. J. Kono, G. N. Ostojic, S. Zaric, et al., Appl. Phys. A: Mater. Sci. Process. 78, 1093 (2004).

    Article  ADS  Google Scholar 

  3. G. N. Ostojic, S. Zaric, J. Kono, et al., Phys. Rev. Lett. 92, 117402 (2004).

  4. Y.-Z. Ma, J. Stenger, J. Zimmerman, et al., J. Chem. Phys. 120, 3368 (2004).

    ADS  Google Scholar 

  5. H. Hippler, A.-N. Unterreiner, J.-P. Yang, et al., Phys. Chem. Chem. Phys. 6, 2387 (2004).

    Google Scholar 

  6. P. Nikolaev, M. J. Bradley, F. Rohmund, et al., Chem. Phys. Lett. 313, 91 (1999).

    Article  Google Scholar 

  7. A. S. Lobach, N. G. Spitsyna, S. V. Terekhov, and E. D. Obraztsova, Fiz. Tverd. Tela (St. Petersburg) 44, 457 (2002) [Phys. Solid State 44, 475 (2002)].

    Google Scholar 

  8. E. D. Obraztsova, M. Fujii, S. Hayashi, et al., in Nanoengineered Nanofibrous Materials, Ed. by S. I. Guceri, Y. Gogotski, and V. Kuznetsov; NATO ASI Ser., Ser. 2 169, 389 (2004).

  9. E. N. Ushakov, V. A. Nadtochenko, V. A. Gromov, et al., Chem. Phys. 298, 251 (2004).

    Article  Google Scholar 

  10. S. M. Bachilo, M. S. Strano, C. Kittrell, et al., Science 298, 2361 (2002).

    Article  ADS  Google Scholar 

  11. V. C. Moore, M. S. Strano, E. H. Haroz, et al., Nano Lett. 3, 1379 (2003).

    Article  Google Scholar 

  12. M. J. O’Connell, S. M. Bachilo, C. B. Huffman, et al., Science 297, 593 (2002).

    ADS  Google Scholar 

  13. M. F. Lin, Phys. Rev. B 62, 13153 (2000).

    Google Scholar 

  14. S. Kazaoui, N. Minami, H. Yamawaki, et al., Phys. Rev. B 62, 1643 (2000).

    Article  ADS  Google Scholar 

  15. V. M. Farztdinov, A. I. Dobryakov, V. S. Letokhov, et al., Phys. Rev. B 56, 4176 (1997).

    Article  ADS  Google Scholar 

  16. S. Stagira, M. Nisoli, and S. De Silvestri, Chem. Phys. 251, 259 (2000).

    Article  Google Scholar 

  17. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 90, 207401 (2003).

    Google Scholar 

  18. T. Hertel, R. Fasel, and G. Moos, Appl. Phys. A: Mater. Sci. Process. 75, 449 (2002).

    Article  ADS  Google Scholar 

  19. O. J. Korovyanko, C.-X. Sheng, Z. V. Vardeny, et al., Phys. Rev. Lett. 92, 17403 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 80, No. 3, 2004, pp. 200–205.

Original Russian Text Copyright © 2004 by Nadtochenko, Lobach, Gostev, Sarkisov, Shcherbinin, Obraztsova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadtochenko, V.A., Lobach, A.S., Gostev, F.E. et al. Dynamics and spectra of excited states of water-micellar suspensions of single-walled carbon nanotubes. Jetp Lett. 80, 176–180 (2004). https://doi.org/10.1134/1.1808845

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1808845

PACS numbers

Navigation