Skip to main content
Log in

Relaxer ferroelectrics as promising materials for IR detectors

  • Solid-State Electronics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The dielectric and pyroelectric properties of a typical relaxer ferroelectric, 0.9PbMg1/3Nb2/3O3-0.1PbTiO3 (PMN-PT), are studied experimentally. Based on the results obtained, the pyroelectric constant and figure of merit of the material when used in IR detectors are calculated. These parameters are presented as a function of temperature and external electric field. The current and voltage sensitivities and the detectivity of PMN-PT-based IR detectors are evaluated. They are compared with the same properties of pyroelectric detectors and dielectric bolometers that use traditional pyroelectric materials as the active element and also of other uncooled photodetectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. van der Ziel, Noise in Measurements (Wiley, New York, 1976; Mir, Moscow, 1979).

    Google Scholar 

  2. A. O. Olesk, Photoresistors (Énergiya, Moscow, 1966) [in Russian].

    Google Scholar 

  3. B. A. Matveev, M. Aidaraliev, G. A. Gavrilov, et al., Sens. Actuators B 51, 233 (1998).

    Article  Google Scholar 

  4. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford Univ. Press, Oxford, 1977; Mir, Moscow, 1981).

    Google Scholar 

  5. M. Daglish, Integr. Ferroelectr. 22, 473 (1988).

    Google Scholar 

  6. R. W. Whatmore, P. C. Osbond, and N. M. Shorrocks, Ferroelectrics 76, 351 (1987).

    Google Scholar 

  7. M. Noda, K. Inoue, M. Ogura, et al., Sens. Actuators A 97–98, 329 (2002).

    Google Scholar 

  8. N. M. Shorrock, R. W. Whatmore, and P. C. Osbond, Ferroelectrics 106, 387 (1990).

    Google Scholar 

  9. S. Bauer and S. B. Lang, IEEE Trans. Dielectr. Electr. Insul. 3, 647 (1996).

    Article  Google Scholar 

  10. M. A. Todd, P. P. Donohue, M. A. Harper, et al., Integr. Ferroelectr. 35, 115 (2001).

    Google Scholar 

  11. M. Noda, H. Zhu, H. Xu, et al., Integr. Ferroelectr. 35, 31 (2001).

    Google Scholar 

  12. W. Liu, J. S. Ko, and W. Zhu, Integr. Ferroelectr. 35, 127 (2001).

    Google Scholar 

  13. A. P. de Kroon, S. C. Dunn, and R. W. Whatmore, Integr. Ferroelectr. 35, 209 (2001).

    Google Scholar 

  14. E. P. Smirnova, S. E. Aleksandrov, K. A. Sotnikov, et al., Fiz. Tverd. Tela (St. Petersburg) 45, 1245 (2003) [Phys. Solid State 45, 1305 (2003)].

    Google Scholar 

  15. S. E. Aleksandrov, G. A. Gavrilov, A. A. Kapralov, et al., Proc. SPIE 5381, 128 (2004).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 74, No. 9, 2004, pp. 72–76.

Original Russian Text Copyright © 2004 by Aleksandrov, Gavrilov, Kapralov, Smirnova, Sotnikova, Sotnikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleksandrov, S.E., Gavrilov, G.A., Kapralov, A.A. et al. Relaxer ferroelectrics as promising materials for IR detectors. Tech. Phys. 49, 1176–1180 (2004). https://doi.org/10.1134/1.1800239

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1800239

Keywords

Navigation