Skip to main content
Log in

Oxidation kinetics of thin titanium films grown on tungsten

  • Low-Dimensional Systems and Surface Physics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Growth of thin Ti films on (100)W and the kinetics of their oxidation are studied using thermal-desorption spectroscopy and Auger electron spectroscopy. Titanium films grow nearly layer by layer on the (100)W face at room temperature. The activation energy for desorption of Ti atoms decreases from 5.2 eV for coverage θ=0.1 to 4.9 eV in a multilayer film. Oxidation of a thin (θ=6) titanium film starts with dissolution of oxygen atoms in its bulk to the limiting concentration for a given temperature, after which the film oxidizes to TiO, with the TiO2 oxide starting to grow when exposure of the film to oxygen is prolonged. The thermal desorption of oxides follows zero-order kinetics and is characterized by desorption activation energies of 5.1 (TiO) and 5.9 eV (TiO2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fujishima and K. Honda, Nature 37, 238 (1972).

    Google Scholar 

  2. A. L. Lisebigler, G. Lu, and J. T. Jates, Jr., Chem. Rev. 95, 735 (1995).

    Google Scholar 

  3. D. M. Hanson, R. Stockbauer, and T. E. Madey, Phys. Rev. B 24(10), 5513 (1981).

    Article  ADS  Google Scholar 

  4. E. Bertel, R. Stockbauer, and T. E. Madey, Surf. Sci. 141, 355 (1984).

    Article  Google Scholar 

  5. A. Takano and K. Ueda, Surf. Sci. 242, 450 (1991).

    Google Scholar 

  6. C. Ocal and S. Ferrer, Surf. Sci. 178, 850 (1986).

    Article  Google Scholar 

  7. P. H. Dawson, Surf. Sci. 65, 41 (1977).

    Article  Google Scholar 

  8. D. Brugnian, C. Argile, M. G. Barthes-Labrousse, and G. E. Read, Surf. Sci. 141, 639 (1984).

    Google Scholar 

  9. A. Azouley, N. Shamir, E. Fromm, and M. H. Mintz, Surf. Sci. 370, 1 (1997).

    Google Scholar 

  10. G. Lu, S. L. Bernasek, and J. Schwartz, Surf. Sci. 458, 80 (2000).

    Article  Google Scholar 

  11. W. Brearly and N. A. Surplice, Surf. Sci. 64, 372 (1977).

    Google Scholar 

  12. A. Platau, L. I. Johansson, A. L. Hugstrom, S. E. Karlsson, and S. B. M. Hagstrom, Surf. Sci. 63, 153 (1977).

    Article  Google Scholar 

  13. M. Martin, W. Mader, and E. Fromm, Thin Solid Films 250, 61 (1994).

    Article  Google Scholar 

  14. I. Vaquila, M. C. G. Passeggi, Jr., and J. Ferron, Phys. Rev. B 55(20), 13925 (1997).

    Google Scholar 

  15. W. S. Oh, C. Xu, D. Y. Kim, and D. W. Goodman, J. Vac. Sci. Technol. A 15, 1710 (1997).

    ADS  Google Scholar 

  16. O. Guo, W. S. Oh, and D. W. Goodman, Surf. Sci. 437, 49 (1999).

    Google Scholar 

  17. R. L. Strong and J. L. Erskine, J. Vac. Sci. Technol. A 3, 1428 (1985).

    Article  ADS  Google Scholar 

  18. B. T. Jonker, J. F. Morar, and R. L. Park, Phys. Rev. B 24(6), 2951 (1981).

    Article  ADS  Google Scholar 

  19. S. Aduru and J. W. Rabalais, Langmuir 3, 543 (1987).

    Article  Google Scholar 

  20. D. E. Eastman, Solid State Commun. 10, 933 (1972).

    Article  Google Scholar 

  21. H. D. Shih and F. Jona, Appl. Phys. 12, 311 (1977).

    Article  Google Scholar 

  22. L. Porte, M. Demosthenous, and T. M. Duc, J. Less-Common Met. 56, 183 (1977).

    Article  Google Scholar 

  23. J. S. Corneille, J.-W. He, and D. W. Goodman, Surf. Sci. 338, 211 (1995).

    Article  Google Scholar 

  24. V. N. Ageev and E. Yu. Afanas’eva, Poverkhnost, No. 7, 30 (1987).

  25. V. N. Ageev and E. Yu. Afanas’eva, Fiz. Tverd. Tela (St. Petersburg) 39(8), 1484 (1997) [Phys. Solid State 39, 1318 (1997)].

    Google Scholar 

  26. M.-Ch. Wu, J. S. Corneille, and D. W. Goodman, Surf. Sci. Lett. 255, L536 (1991).

    Google Scholar 

  27. Thermodynamic Properties of Particular Substances: Handbook, Ed. by V. P. Glushko, L. V. Gurevich, N. V. Veits, et al., 3rd ed. (Nauka, Moscow, 1978–1982).

    Google Scholar 

  28. E. Fromm and E. Gebhardt, Gase und Kohlenstoffin Metallen (Springer, Berlin, 1976; Metallurgiya, Moscow, 1980).

    Google Scholar 

  29. Course of Physical Chemistry, Ed. by Ya. I. Gerasimov et al. (Khimiya, Moscow, 1964) [in Russian].

    Google Scholar 

  30. E. K. Kazenas and Yu. V. Tsvetkov, Oxide Evaporation (Nauka, Moscow, 1997) [in Russian].

    Google Scholar 

  31. V. N. Ageev and N. I. Ionov, Zh. Tekh. Fiz. 38(7), 1149 (1968) [Sov. Phys. Tech. Phys. 13, 950 (1968)].

    Google Scholar 

  32. N. P. Vas’ko and Yu. G. Ptushinskii, Ukr. Fiz. Zh. 13, 347 (1968).

    Google Scholar 

  33. V. N. Ageev, Zh. Tekh. Fiz. 40(8), 1743 (1970) [Sov. Phys. Tech. Phys. 15, 1355 (1970)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 46, No. 8, 2004, pp. 1498–1503.

Original Russian Text Copyright © 2004 by Ageev, Afanas’eva, Potekhina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ageev, V.N., Afanas’eva, E.Y. & Potekhina, N.D. Oxidation kinetics of thin titanium films grown on tungsten. Phys. Solid State 46, 1542–1547 (2004). https://doi.org/10.1134/1.1788792

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1788792

Keywords

Navigation