Skip to main content
Log in

Integration of quantum cryptography into fiber-optic telecommunication systems

  • Scientific Summaries
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

The prototype of a new quantum cryptosystem is described. Such a cryptosystem is naturally called time-shift quantum cryptography. It realizes all basic quantum-cryptography protocols [BB84, B92, BB84(4+2)] in a common fiber-optic system. This scheme does not involve Mach-Zehnder interferometers, which enables one to naturally realize the multiplex mode of secure key distribution and to naturally integrate this quantum-cryptography scheme into traditional fiber-optic telecommunication systems. The proposed time coding method in quantum cryptography makes it possible to significantly simplify experimental schemes and to exclude the finest fiber-optic part, the interferometer. In essence, the fundamental difference of the time coding method from the phase coding method is that the part using phase relations in superposition between “parts” of a quantum state is eliminated from the phase-coding method, and only the part using the time division principle is retained. The time division principle is common for both methods and is minimally necessary, in contrast to the phasecoding method, which can be excluded altogether. The proposed scheme is briefly compared with the two most developed phase-coding schemes (without self-compensation and with passive self-compensation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. S. Vernam, J. Am. Inst. Electr. Eng. 55, 109 (1926).

    Google Scholar 

  2. V. A. Kotel’nikov, Report (1941).

  3. C. E. Shannon, Bell Syst. Tech. J. 28, 658 (1949).

    Google Scholar 

  4. S. Wiesner, SIGACT News 15, 78 (1983).

    Article  MATH  Google Scholar 

  5. C. H. Bennett and G. Brassard, in Proceedings of IEEE International Conference on Computer Systems and Signal Processes (Bangalore, 1984), p. 175; C. H. Bennett, Phys. Rev. Lett. 68, 3121 (1992).

  6. W. K. Wootters and W. H. Zurek, Nature 299, 802 (1982).

    Article  ADS  Google Scholar 

  7. C. H. Bennett, F. Bessette, G. Brassard, et al., J. Cryptology 5, 3 (1992).

    Article  Google Scholar 

  8. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, quantph/0101098; Rev. Mod. Phys. 74, 145 (2002).

    Article  ADS  Google Scholar 

  9. R. J. Hughes, G. L. Morgan, and C. G. Peterson, J. Mod. Opt. 47, 533 (1998).

    MathSciNet  Google Scholar 

  10. P. C. Sun, Y. Mazurenko, and Y. Fainman, Opt. Lett. 20, 1062 (1995); Y. Mazurenko, R. Giust, and J. P. Goedgebuer, Opt. Commun. 133, 87 (1997).

    ADS  Google Scholar 

  11. F. Grosshans, G. Van Assche, J. Wenger, et al., Nature 421, 238 (2003).

    Article  ADS  Google Scholar 

  12. H. Zbinden, H. B. Pasquinucci, N. Gisin, and G. Ribordy, Appl. Phys. B 67, 743 (1998).

    Article  ADS  Google Scholar 

  13. A. Muller, T. Herzog, B. Huttner, et al., Appl. Phys. Lett. 70, 793 (1997).

    Article  ADS  Google Scholar 

  14. H. Zbinden, J. D. Gautier, N. Gisin, et al., Electron. Lett. 33, 586 (1998).

    Google Scholar 

  15. D. S. Bethune and W. P. Risk, IEEE J. Quantum Electron. 36, 340 (2000).

    Article  Google Scholar 

  16. G. Ribordy, J. D. Gautier, N. Gisin, et al., Electron. Lett. 34, 2116 (1998); D. Stucki, N. Gisin, O. Guinnard, et al., quant-ph/0203118.

    Article  Google Scholar 

  17. M. Bourennane, F. Gibson, A. Karlsson, et al., Opt. Express 4, 383 (1999).

    ADS  Google Scholar 

  18. C. Marand and P. D. Townsend, Opt. Lett. 20, 1695 (1995).

    ADS  Google Scholar 

  19. H. Kosaka, A. Tomita, Y. Nambu, et al., quantph/0306066.

  20. T. Kimura, Y. Nambu, T. Hatanaka, et al., Preprint (2004).

  21. D. S. Bethune and W. P. Risk, New J. Phys. 4, 42.1 (2002).

    Article  Google Scholar 

  22. D. S. Bethune, M. Navarro, and W. P. Risk, quantph/0104089.

  23. C. Elliot, D. Pearson, and G. Troxel, quant-ph/0307049.

  24. J. G. Rarity, P. R. Tapster, P. M. Gorman, and P. Knight, New J. Phys. 4, 82.1 (2002).

    Article  Google Scholar 

  25. R. J. Huges, J. E. Nordholt, D. Derkas, and C. G. Peterson, quant-ph/0206092.

  26. C. Kurtsiefera, P. Zarda, M. Halder, et al., Preprint (2002).

  27. A. Acin, N. Gisin, and V. Scarani, quant-ph/0302037.

  28. D. Mayers, quant-ph/9802025.

  29. E. Biham, M. Boyer, P. O. Boykin, et al., quantph/9912053.

  30. P. W. Shor and J. Preskill, quant-ph/0003004.

  31. K. Tamaki, M. Koashi, and N. Imoto, quant-ph/0212161 (2002).

  32. N. Lutkenhaus, Phys. Rev. A 61, 052304 (2000).

    Google Scholar 

  33. G. Brassard, N. Lutkenhaus, T. Mor, and B. C. Sanders, Phys. Rev. Lett. 85, 1330 (2000).

    Article  ADS  Google Scholar 

  34. G. Gilbert and M. Hamrick, Practical Quantum Cryptography: A Comprehensive Analysis, Mitre Technical Report, MTR00W0000052 (Mitre Corporation, McLean, VA, 2000), Part 1.

    Google Scholar 

  35. A. Beveratos, R. Brouri, T. Gacoin, et al., quantph/0206136.

  36. S. N. Molotkov, Pis’ma Zh. Éksp. Teor. Fiz. 78, 1156 (2003) [JETP Lett. 78, 659 (2003)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 79, No. 11, 2004, pp. 691–704.

Original Russian Text Copyright © 2004 by Molotkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molotkov, S.N. Integration of quantum cryptography into fiber-optic telecommunication systems. Jetp Lett. 79, 559–570 (2004). https://doi.org/10.1134/1.1787106

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1787106

PACS numbers

Navigation