Skip to main content
Log in

Dynamics of jumpwise temperature pitch variations in planar cholesteric layers for a finite strength of surface anchoring

  • Fluids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The dynamics of pitch jumps in cholesteric layers with a finite surface anchoring strength under variations in temperature is investigated theoretically. General expressions are presented that connect the dynamics of pitch jumps with the parameters that determine the process, such as the viscosity, the specific form of the anchoring potential, and the dimensionless parameter S d = K 22/Wd, where W is the depth of the anchoring potential, K 22 is the twist elastic modulus, and d is the layer thickness. It is found that the shape of the anchoring potential significantly influences the temporal behavior of the cholesteric helix in the process of a pitch jump. To illustrate this revealed dependence of the pitch jump dynamics on the shape and strength of the anchoring potential, the problem was investigated for two different models of the surface anchoring potential for a jump mechanism in connection with the director at the surface slipping over the barrier of the anchoring potential. Calculations for the unwinding (winding) of the helix in the process of the jump were performed to investigate the case of infinitely strong anchoring on one surface and finite anchoring on the other, which is important in applications. The results show that an experimental investigation of the dynamics of the pitch jumps will make it possible to distinguish different shapes of the finite strength anchoring potential and, in particular, it will provide a means for determining whether the well-known Rapini-Papoular anchoring potential is the best suited potential relevant to the dynamics of pitch jumps in cholesteric layers with a finite surface anchoring strength. The optimal conditions for experimental observation of these phenomena are briefly considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Belyakov and E. I. Kats, Zh. Éksp. Teor. Fiz. 118, 560 (2000) [JETP 91, 488 (2000)].

    Google Scholar 

  2. V. A. Belyakov, P. Oswald, and E. I. Kats, Zh. Éksp. Teor. Fiz. 123, 1040 (2003) [JETP 96, 915 (2003)].

    Google Scholar 

  3. V. A. Belyakov and E. I. Kats, Zh. Éksp. Teor. Fiz. 120, 430 (2001) [JETP 93, 380 (2001)].

    Google Scholar 

  4. V. A. Belyakov, Pis’ma Zh. Éksp. Teor. Fiz. 76, 99 (2002) [JETP Lett. 76, 88 (2002)].

    Google Scholar 

  5. G. Chilaya, G. Hauck, H. D. Koswig, et al., Cryst. Res. Technol. 32, 401 (1997).

    Google Scholar 

  6. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd. ed. (Mir, Moscow, 1982; Clarendon, Oxford, 1993).

    Google Scholar 

  7. P. Oswald and P. Pieranski, Les Cristaux Liquides: Concepts et Propriétés Physiques Illustrées par des Expériences (Gordon and Breach, Paris, 2000).

    Google Scholar 

  8. H. Zink and V. A. Belyakov, Mol. Cryst. Liq. Cryst. 265, 445 (1995); Pis’ma Zh. Éksp. Teor. Fiz. 63, 37 (1996) [JETP Lett. 63, 43 (1996)].

    Google Scholar 

  9. S. P. Palto, Zh. Éksp. Teor. Fiz. 121, 308 (2002) [JETP 94, 260 (2002)].

    Google Scholar 

  10. W. Kuczynski, private communication.

  11. R. Barberi and G. Durand, Appl. Phys. Lett. 58, 2907 (1991).

    Article  ADS  Google Scholar 

  12. R. Barberi, M. Giocondo, and G. Durand, Appl. Phys. Lett. 60, 1085 (1992).

    Article  ADS  Google Scholar 

  13. P. J. Kedney and F. M. Leslie, Liq. Cryst. 24, 613 (1998).

    Google Scholar 

  14. L. M. Blinov, E. I. Kats, and A. A. Sonin, Usp. Fiz. Nauk 152, 449 (1987) [Sov. Phys. Usp. 30, 604 (1987)].

    Google Scholar 

  15. E. M. Lifshitz and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 10: Physical Kinetics (Nauka, Moscow, 1979; Pergamon, Oxford, 1981).

    Google Scholar 

  16. G. Vertogen and W. H. de Jeu, Thermotropic Liquid Crystals, Fundamentals (Springer, Berlin, 1988).

    Google Scholar 

  17. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics, 3rd ed. (Pergamon, London, 1959; Nauka, Moscow, 1986).

    Google Scholar 

  18. F. M. Leslie, Adv. Liq. Cryst. 4, 1 (1979).

    Google Scholar 

  19. I. W. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals (Taylor and Francis, London) (in press).

  20. B. Jerome, Rep. Prog. Phys. 54, 391 (1991).

    Article  ADS  Google Scholar 

  21. H. Yokoyama, Mol. Cryst. Liq. Cryst. 165, 265 (1988).

    Google Scholar 

  22. F. Brochard, P. Pieranski, and E. Guyon, Phys. Rev. Lett. 28, 1681 (1972).

    Article  ADS  Google Scholar 

  23. H. F. Gleeson, private communication.

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 126, No. 1, 2004, pp. 89–98.

Original English Text Copyright © 2004 by Belyakov, Stewart, Osipov.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belyakov, V.A., Stewart, I.W. & Osipov, M.A. Dynamics of jumpwise temperature pitch variations in planar cholesteric layers for a finite strength of surface anchoring. J. Exp. Theor. Phys. 99, 73–82 (2004). https://doi.org/10.1134/1.1787080

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1787080

Keywords

Navigation