Dusty photoresonant plasma with coulomb collisions

Abstract

We have studied the charging of dust particles in a dense photoresonant sodium plasma with electron and ion densities as high as 1016 cm−3 produced by laser pumping of the resonance level of Na, which was a small admixture (up to 1%) in an argon buffer gas. We show that the charge of dust particles with a radius of 10 mm at maximum reaches 3 × 105 electron charges and that the potential of the dust particles at a low electron bulk loss rate agrees well with the orbital motion limited (OML) model data. The behavior of the electric field near a dust particle was found to be nonmonotonic. We established that the distribution of the potential near a solitary charged dust particle agrees well with the Debye one, but the screening length proves to be much larger than even the electron Debye length; the discrepancies are largest at the afterglow stage of the photoresonant plasma, when the sodium ion with a low recombination coefficient is the main plasma ion. We determined the domain of parameters for a dense plasma where an ensemble of dust particles can crystallize.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Dusty Plasmas in the New Millennium, Ed. by R. Bharuthram, M. A. Hellberg, P. K. Shukla, and F. Verheest (AIP, Melvill, New York, 2002), AIP Conf. Proc., Vol. 649.

  2. 2.

    V. N. Tsytovich, Usp. Fiz. Nauk 167, 57 (1997) [Phys. Usp. 40, 53 (1997)].

    Google Scholar 

  3. 3.

    A. P. Nefedov, O. F. Petrov, and V. E. Fortov, Usp. Fiz. Nauk 167, 1215 (1997) [Phys. Usp. 40, 1163 (1997)].

    Google Scholar 

  4. 4.

    B. M. Smirnov, Usp. Fiz. Nauk 170, 495 (2000) [Phys. Usp. 43, 453 (2000)].

    Google Scholar 

  5. 5.

    P. M. Shukla, Phys. Plasmas 8, 1791 (2001).

    ADS  Google Scholar 

  6. 6.

    A. Piel and A. Melzer, Plasma Phys. Controlled Fusion 44, R1 (2002).

    Article  ADS  Google Scholar 

  7. 7.

    Ch. Hollenstein, Plasma Phys. Controlled Fusion 42, R93 (2000).

    Article  ADS  Google Scholar 

  8. 8.

    V. N. Tsytovich, G. E. Morfill, and H. Thomas, Fiz. Plazmy 28, 675 (2002) [Plasma Phys. Rep. 28, 623 (2002)].

    Google Scholar 

  9. 9.

    V. Yu. Baranov, I. A. Belov, A. V. Dem’yanov, et al., in Isotopes, Ed. by V. Yu. Baranov (IzdAT, Moscow, 2000), p. 626.

    Google Scholar 

  10. 10.

    M. O. Robbins, K. Kremer, and G. S. Grest, J. Chem. Phys. 88, 3286 (1988).

    Article  ADS  Google Scholar 

  11. 11.

    M. J. Stevens and M. O. Robbins, J. Chem. Phys. 98, 2319 (1993).

    Article  ADS  Google Scholar 

  12. 12.

    E. J. Meijer and D. Frenkel, J. Chem. Phys. 94, 2269 (1991).

    Article  ADS  Google Scholar 

  13. 13.

    R. T. Farouki and S. Hamaguchi, Appl. Phys. Lett. 61, 2973 (1992).

    Article  ADS  Google Scholar 

  14. 14.

    S. Hamaguchi, R. T. Farouki, and D. H. E. Dubin, Phys. Rev. E 56, 4671 (1997).

    Article  ADS  Google Scholar 

  15. 15.

    A. F. Pal’, D. V. Sivokhin, A. N. Starostin, et al., Fiz. Plazmy 28, 32 (2002) [Plasma Phys. Rep. 28, 28 (2002)].

    Google Scholar 

  16. 16.

    V. A. Kas’yanov and A. N. Starostin, in Plasma Chemistry, Ed. by B. M. Smirnov (Énergoatomizdat, Moscow, 1990), No. 16 [in Russian].

    Google Scholar 

  17. 17.

    I. M. Beterov, A. V. Eletskii, and B. M. Smirnov, Usp. Fiz. Nauk 155, 265 (1988) [Sov. Phys. Usp. 31, 535 (1988)].

    Google Scholar 

  18. 18.

    A. V. Eletskii, Yu. N. Zaitsev, and S. V. Fomichev, Zh. Éksp. Teor. Fiz. 94(5), 98 (1988) [Sov. Phys. JETP 67, 920 (1988)].

    ADS  Google Scholar 

  19. 19.

    A. G. Leonov, A. N. Starostin, and D. I. Chekhov, Zh. Éksp. Teor. Fiz. 111, 1274 (1997) [JETP 84, 703 (1997)].

    Google Scholar 

  20. 20.

    A. F. Pal’, A. N. Starostin, and A. V. Filippov, Fiz. Plazmy 27, 155 (2001) [Plasma Phys. Rep. 27, 143 (2001)].

    Google Scholar 

  21. 21.

    A. F. Pal’, A. O. Serov, A. N. Starostin, et al., Zh. Éksp. Teor. Fiz. 119, 272 (2001) [JETP 92, 235 (2001)].

    Google Scholar 

  22. 22.

    A. V. Filippov, N. A. Dyatko, A. F. Pal’, and A. N. Starostin, Fiz. Plazmy 29, 214 (2003) [Plasma Phys. Rep. 29, 190 (2003)].

    Google Scholar 

  23. 23.

    B. Davison, Neutron Transport Theory (Clarendon, Oxford, 1957; Atomizdat, Moscow, 1960).

    Google Scholar 

  24. 24.

    G. I. Marchuk, Methods for Nuclear Reactor Calculations (Atomizdat, Moscow, 1961) [in Russian].

    Google Scholar 

  25. 25.

    Yu. P. Raizer, The Physics of Gas Discharge (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  26. 26.

    J. L. Pack, R. E. Voshall, A. V. Phelps, and L. E. Kline, J. Appl. Phys. 71, 5363 (1992).

    Article  ADS  Google Scholar 

  27. 27.

    V. A. Ivanov, Usp. Fiz. Nauk 162, 35 (1992) [Sov. Phys. Usp. 35, 17 (1992)].

    Google Scholar 

  28. 28.

    B. M. Smirnov, Ions and Excited Atoms in Plasma (Atomizdat, Moscow, 1974) [in Russian].

    Google Scholar 

  29. 29.

    M. S. Barnes, J. H. Keller, J. C. Forster, et al., Phys. Rev. Lett. 68, 313 (1992).

    Article  ADS  Google Scholar 

  30. 30.

    R. M. Measures, J. Quant. Spectrosc. Radiat. Transf. 10, 107 (1970).

    Article  Google Scholar 

  31. 31.

    R. M. Measures and P. G. Cardinal, Phys. Rev. A 23, 804 (1981).

    Article  ADS  Google Scholar 

  32. 32.

    A. V. Zobnin, A. P. Nefedov, V. A. Sinel’shchikov, and V. E. Fortov, Zh. Éksp. Teor. Fiz. 118, 554 (2000) [JETP 91, 483 (2000)].

    Google Scholar 

  33. 33.

    Yu. A. Mankelevich, M. A. Olevanov, and T. V. Rakhimova, Zh. Éksp. Teor. Fiz. 121, 1288 (2002) [JETP 94, 1106 (2002)].

    Google Scholar 

  34. 34.

    Physical Quantities. Handbook, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Énergoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  35. 35.

    M. C. Teich and G. J. Wolga, Phys. Rev. 171, 809 (1968).

    Article  ADS  Google Scholar 

  36. 36.

    E. M. Logophetis and P. L. Hartman, Phys. Rev. Lett. 18, 581 (1967).

    ADS  Google Scholar 

  37. 37.

    M. A. Alaev, A. I. Baranov, N. M. Vereshchagin, et al., Kvantovaya Élektron. (Moscow) 3, 1134 (1976).

    Google Scholar 

  38. 38.

    O. L. Landen, R. J. Winfield, D. D. Burgess, et al., Phys. Rev. A 32, 2963 (1985).

    ADS  Google Scholar 

  39. 39.

    M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, Oxford, 1969; Nauka, Moscow, 1970).

    Google Scholar 

  40. 40.

    A. D. Usachev, private communication (2003).

Download references

Author information

Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 126, No. 1, 2004, pp. 75–88.

Original Russian Text Copyright © 2004 by Leonov, Pal’, Starostin, Filippov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Leonov, A.G., Pal’, A.F., Starostin, A.N. et al. Dusty photoresonant plasma with coulomb collisions. J. Exp. Theor. Phys. 99, 61–72 (2004). https://doi.org/10.1134/1.1787079

Download citation

Keywords

  • Dust Particle
  • Debye Length
  • Sodium Plasma
  • Charged Dust
  • Resonance Level