Skip to main content
Log in

The method of polarization tomography of radiation in quantum optics

  • Atoms, Spectra, Radiation
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The essence and basic structural elements of the method of polarization tomography of quantum radiation (the reconstruction of the polarization states of a field solely from polarization measurements) are described. The essential features of the method are discussed in comparison with usual field and spin tomographies. A general scheme for experimentally implementing this method is suggested and its use in polarization tomography of biphotonic radiation with hidden polarization is briefly analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Tatarskii, Usp. Fiz. Nauk 139, 587 (1983) [Sov. Phys. Usp. 26, 311 (1983)].

    MathSciNet  Google Scholar 

  2. M. Hillery, R. F. O’Connell, M. O. Scully, and E. P. Wigner, Phys. Rep. 106, 121 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  3. H.-W. Lee, Phys. Rep. 259, 147 (1995).

    Article  MathSciNet  Google Scholar 

  4. V. P. Karassiov and A. V. Masalov, Laser Phys. 12, 948 (2002).

    Google Scholar 

  5. V. Buzek and P. L. Knight, in Progress in Optics, Ed. by E. Wolf (North-Holland, Amsterdam, 1995), Vol. 34, p. 1.

    Google Scholar 

  6. V. P. Karassiov and A. V. Masalov, J. Opt. B: Quantum Semiclassic. Opt. 4, S366 (2002).

    Google Scholar 

  7. B. B. Kadomtsev, Usp. Fiz. Nauk 164, 449 (1994) [Phys. Usp. 37, 425 (1994)].

    Google Scholar 

  8. A. Steane, Rep. Prog. Phys. 61, 117 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  9. The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation, Ed. by D. Bouwmeester, A. K. Ekert, and A. Zeilinger (Springer, Berlin, 2000; Postmarket, Moscow, 2002).

    Google Scholar 

  10. B. A. Grishanin and V. N. Zadkov, Radiotekh. Élektron. (Moscow) 47, 1029 (2002).

    Google Scholar 

  11. K. Vogel and H. Risken, Phys. Rev. A 40, 2847 (1989).

    ADS  Google Scholar 

  12. D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, Phys. Rev. Lett. 70, 1244 (1993).

    Article  ADS  Google Scholar 

  13. H. Kühn, D.-G. Welsh, and W. Vogel, Phys. Rev. A 51, 4240 (1995).

    Article  ADS  Google Scholar 

  14. U. Leonhardt, H. Paul, and G. M. D’Ariano, Phys. Rev. A 52, 4899 (1995).

    Article  ADS  Google Scholar 

  15. V. P. Karasev, Kratk. Soobshch. Fiz., No. 9, 34 (1999).

  16. P. A. Bushev, V. P. Karasev, A. V. Masalov, and A. A. Putilin, Opt. Spektrosk. 91, 558 (2001) [Opt. Spectrosc. 91, 526 (2001)].

    Google Scholar 

  17. M. G. Raymer, A. C. Funk, and D. F. McAlister, in Quantum Communications, Computing and Measurement 2, Ed. by P. Kumar, G. M. D’Ariano, and O. Hirota (Kluwer Academic/Plenum, New York, 2000), p. 147.

    Google Scholar 

  18. G. S. Agarwal, J. Lehner, and H. Paul, Opt. Commun. 129, 369 (1996).

    Article  ADS  Google Scholar 

  19. N. Korolkova, G. Leuchs, R. Loudon, et al., Phys. Rev. A 65, 052306 (2002).

  20. R. Schnabel, W. P. Bowen, N. Treps, et al., Phys. Rev. A 67, 012316 (2003).

  21. J. Heersink, T. Gaber, S. Lorenz, et al., Phys. Rev. A 68, 013815 (2003).

  22. V. P. Karassiov, J. Phys. A 26, 4345 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  23. V. P. Karassiov, J. Russ. Laser Res. 15, 391 (1994); J. Russ. Laser Res. 21, 370 (2000).

    Google Scholar 

  24. R. L. Stratonovich, Zh. Éksp. Teor. Fiz. 31, 1012 (1956) [Sov. Phys. JETP 4, 891 (1956)].

    MATH  Google Scholar 

  25. D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (Nauka, Leningrad, 1975; World Sci., Singapore, 1988).

    Google Scholar 

  26. S. Weigert, Phys. Rev. Lett. 84, 802 (2000).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. D. Hudson, Statistics. Lectures on Elementary Statistics and Probability (Geneva, 1964; Mir, Moscow, 1970).

  28. S. M. Chumakov, A. B. Klimov, and K. B. Wolf, Phys. Rev. A 61, 034101 (2000).

    Google Scholar 

  29. V. A. Andreev and V. I. Man’ko, Zh. Éksp. Teor. Fiz. 114, 437 (1998) [JETP 87, 239 (1998)].

    Google Scholar 

  30. A. B. Klimov, O. V. Man’ko, V. I. Man’ko, et al., J. Phys. A 35, 6101 (2002).

    ADS  MathSciNet  Google Scholar 

  31. V. P. Karassiov and V. I. Puzyrevskii, J. Sov. Laser Res. 10, 229 (1989).

    Google Scholar 

  32. D. N. Klyshko, Zh. Éksp. Teor. Fiz. 111, 1955 (1997) [JETP 84, 1065 (1997)].

    Google Scholar 

  33. A. V. Burlakov, S. P. Kulik, G. O. Rytikov, and M. V. Chekhova, Zh. Éksp. Teor. Fiz. 122, 738 (2002) [JETP 95, 639 (2002)].

    Google Scholar 

  34. F. Natterer, The Mathematics of Computerized Tomography (Wiley, Chichester, 1986; Mir, Moscow, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 126, No. 1, 2004, pp. 63–74.

Original Russian Text Copyright © 2004 by Karassiov, Masalov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karassiov, V.P., Masalov, A.V. The method of polarization tomography of radiation in quantum optics. J. Exp. Theor. Phys. 99, 51–60 (2004). https://doi.org/10.1134/1.1787078

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1787078

Keywords

Navigation