Skip to main content
Log in

Interference of scattered waves and mixing rules for group velocities in nanocomposite materials

  • Atoms, Spectra, Radiation
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Mixing rules for group velocities in nanocomposite materials with different architecture, including lamellar-inhomogeneous nanotextures, Maxwell Garnett structures, and one-dimensional photonic crystals, are derived and analyzed. The group velocity can be controlled for such composite structures by changing nanocrystal sizes and varying the dielectric properties and the volume-filling fractions of the constituent materials. The interference of scattered waves in structures with a spatial scale of optical inhomogeneities comparable to the radiation wavelength gives rise to new physical phenomena that cannot be described in terms of the effective-medium approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. M. Lawand, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, Nature 368, 436 (1994).

    ADS  Google Scholar 

  2. W. Sha, C.-H. Liu, and R. Alfano, Opt. Lett. 19, 1922 (1994).

    ADS  Google Scholar 

  3. H. Cao, Y. G. Zhao, S. T. Ho, et al., Phys. Rev. Lett. 82, 2278 (1999).

    Article  ADS  Google Scholar 

  4. L. A. Golovan, V. Yu. Timoshenko, A. B. Fedotov, et al., Appl. Phys. B 73, 31 (2001).

    ADS  Google Scholar 

  5. P. K. Kashkarov, L. A. Golovan, A. B. Fedotov, et al., J. Opt. Soc. Am. B 19, 2273 (2002).

    ADS  Google Scholar 

  6. L. A. Golovan, L. P. Kuznetsova, A. B. Fedotov, et al., Appl. Phys. B 76, 429 (2003).

    Article  ADS  Google Scholar 

  7. Nonlinear Optics of Photonic Crystals, Ed. by C. M. Bowden and A. M. Zheltikov, Feature Issue of J. Opt. Soc. Am. B 19(9) (2002).

  8. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Opt. Lett. 21, 1547 (1996).

    ADS  Google Scholar 

  9. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, Science 282, 1476 (1998).

    Article  Google Scholar 

  10. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000).

    ADS  Google Scholar 

  11. Supercontinuum Generation, Ed. by A. M. Zheltikov, Special Issue of Appl. Phys. B 77(1/2) (2003).

  12. D. J. Jones, S. A. Diddams, J. K. Ranka, et al., Science 288, 635 (2000).

    ADS  Google Scholar 

  13. R. Holzwarth, T. Udem, T. W. Hänsch, et al., Phys. Rev. Lett. 85, 2264 (2000).

    Article  ADS  Google Scholar 

  14. A. Baltuska, T. Fuji, and T. Kobayashi, Opt. Lett. 27, 1241 (2002).

    ADS  Google Scholar 

  15. I. Hartl, X. D. Li, C. Chudoba, et al., Opt. Lett. 26, 608 (2001).

    ADS  Google Scholar 

  16. A. B. Fedotov, Ping Zhou, A. P. Tarasevitch, et al., J. Raman Spectrosc. 33, 888 (2002).

    Article  Google Scholar 

  17. S. O. Konorov and A. M. Zheltikov, Opt. Express 11, 2440 (2003).

    ADS  Google Scholar 

  18. J. E. Sipe and R. W. Boyd, Phys. Rev. A 46, 1614 (1992).

    ADS  Google Scholar 

  19. A. Fiore, V. Berger, E. Rosencher, et al., Nature 391, 463 (1998).

    Google Scholar 

  20. L. A. Golovan’, A. M. Zheltikov, P. K. Kashkarov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 69, 274 (1999) [JETP Lett. 69, 300 (1999)].

    Google Scholar 

  21. S. V. Zabotnov, A. B. Fedotov, S. O. Konorov, et al., Opt. Commun. 224, 309 (2003).

    ADS  Google Scholar 

  22. S. O. Konorov, D. A. Sidorov-Biryukov, I. Bugar, et al., Appl. Phys. B 78, 73 (2004).

    ADS  Google Scholar 

  23. Lord Rayleigh, Philos. Mag. 34, 481 (1892).

    MATH  Google Scholar 

  24. O. Wiener, Abh. Sachs. Ges. Akad. Wiss. Math.-Phys. Kl. 32, 575 (1912).

    Google Scholar 

  25. S. M. Ryzhov, Zh. Éksp. Teor. Fiz. 29, 11 (1955).

    Google Scholar 

  26. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, New York, 1984; Mir, Moscow, 1987).

    Google Scholar 

  27. J. C. Maxwell Garnett, Philos. Trans. R. Soc. London 203, 385 (1904).

    ADS  Google Scholar 

  28. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, 1995).

    Google Scholar 

  29. K. Sakoda, Optical Properties of Photonic Crystals (Springer, Berlin, 2001).

    Google Scholar 

  30. S. G. Johnson and J. D. Joannopoulos, Photonic Crystals: The Road from Theory to Practice (Kluwer, Boston, 2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 126, No. 1, 2004, pp. 47–53.

Original Russian Text Copyright © 2004 by Zheltikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheltikov, A.M. Interference of scattered waves and mixing rules for group velocities in nanocomposite materials. J. Exp. Theor. Phys. 99, 37–42 (2004). https://doi.org/10.1134/1.1787076

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1787076

Keywords

Navigation