Skip to main content
Log in

Femtosecond spectroscopy of coherent anti-Stokes Raman scattering with frequency-tunable chirped pulses generated in a microstructure fiber

  • Atoms, Spectra, Radiation
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A new scheme of chirped-pulse femtosecond coherent anti-Stokes Raman scattering spectroscopy is proposed and experimentally implemented. A theory of this modification of coherent nonlinear spectroscopy is developed. We use this approach to show that a linear time-frequency mapping defined by linearly chirped pulses allows the spectra of nonlinear response of a medium to be measured by varying the delay time between the pump pulses. Microstructure fibers with a special dispersion profile are at the heart of the experimental implementation of this technique. Such fibers are ideally suited for the generation of frequency-tunable pulses with a smooth envelope and a controlled chirp. We present the results of experimental characterization of the envelope, spectrum, and chirp of anti-Stokes pulses generated in microstructure fibers by femtosecond Cr:forsterite-laser pulses. These frequency-tunable anti-Stokes pulses produced and shaped in microstructure fibers are then employed for coherent anti-Stokes Raman scattering spectroscopy of toluene solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Akhmanov and N. I. Koroteev, Methods of Nonlinear Optics in Light Scattering Spectroscopy (Nauka, Moscow, 1981).

    Google Scholar 

  2. G. L. Eesley, Coherent Raman Spectroscopy (Pergamon, Oxford, 1981).

    Google Scholar 

  3. A. M. Zheltikov and N. I. Koroteev, Usp. Fiz. Nauk 169, 385 (1999) [Phys. Usp. 42, 321 (1999)].

    Google Scholar 

  4. A. Zumbusch, G. R. Holtom, and X. Sunney Xie, Phys. Rev. Lett. 82, 4142 (1999).

    Article  ADS  Google Scholar 

  5. D. A. Akimov, S. O. Konorov, D. A. Sidorov-Biryukov, et al., Proc. SPIE 4749, 101 (2002).

    ADS  Google Scholar 

  6. Femtosecond Coherent Raman Spectroscopy, Ed. by W. Kiefer, Special Issue of J. Raman Spectrosc. 31(1/2) (2000).

  7. N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512 (2002).

    Article  ADS  Google Scholar 

  8. D. von der Linde, A. Lauberau, and W. Kaiser, Phys. Rev. Lett. 26, 954 (1971).

    ADS  Google Scholar 

  9. Nonlinear Raman Spectroscopy, Ed. by P. Radi and A. M. Zheltikov, Special Issue of J. Raman Spectrosc. 33(11/12) (2002).

  10. Nonlinear Raman Spectroscopy, Ed. by P. Radi and A. M. Zheltikov, Special Issue of J. Raman Spectrosc. 34(11/12) (2003).

  11. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Opt. Lett. 21, 1547 (1996).

    ADS  Google Scholar 

  12. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, Science 282, 1476 (1998).

    Article  Google Scholar 

  13. P. St. J. Russell, Science 299, 358 (2003).

    Article  ADS  Google Scholar 

  14. A. M. Zheltikov, Usp. Fiz. Nauk 170, 1203 (2000) [Phys. Usp. 43, 1125 (2000)].

    Google Scholar 

  15. Nonlinear Optics of Photonic Crystals, Ed. by C. M. Bowden and A. M. Zheltikov, Feature Issue of J. Opt. Soc. Am. B 19(9) (2002).

  16. Supercontinuum Generation, Ed. by A. M. Zheltikov, Special Issue of Appl. Phys. B 77(2/3) (2003).

  17. D. A. Akimov, E. E. Serebryannikov, A. M. Zheltikov, et al., Opt. Lett. 28, 1948 (2003).

    ADS  Google Scholar 

  18. S. O. Konorov and A. M. Zheltikov, Opt. Express 11, 2440 (2003).

    ADS  Google Scholar 

  19. A. M. Zheltikov, Usp. Fiz. Nauk 174, 73 (2004) [Phys. Usp. 47, 69 (2004)].

    Google Scholar 

  20. E. T. J. Nibbering, D. A. Wiersma, and K. Duppen, Phys. Rev. Lett. 68, 514 (1992).

    Article  ADS  Google Scholar 

  21. B. Kohler, V. V. Yakovlev, J. Che, et al., Phys. Rev. Lett. 74, 3360 (1995).

    ADS  Google Scholar 

  22. V. V. Lozovoy, S. A. Antipin, F. E. Gostev, et al., Chem. Phys. Lett. 284, 221 (1998).

    Article  Google Scholar 

  23. T. Lang and M. Motzkus, J. Opt. Soc. Am. B 19, 340 (2002).

    ADS  Google Scholar 

  24. C. J. Bardeen, Q. Wang, and C. V. Shank, Phys. Rev. Lett. 75, 3410 (1995).

    Article  ADS  Google Scholar 

  25. A. Assion, T. Baumert, M. Bergt, et al., Science 282, 919 (1998).

    Article  ADS  Google Scholar 

  26. J. L. Herek, W. Wohlleben, R. J. Cogdell, et al., Nature 417, 533 (2002).

    Article  ADS  Google Scholar 

  27. D. Zeidler, S. Frey, W. Wohlleben, et al., J. Chem. Phys. 116, 5231 (2002).

    Article  ADS  Google Scholar 

  28. A. M. Zheltikov and A. N. Naumov, Quantum Electron. 30, 606 (2000).

    Google Scholar 

  29. A. M. Zheltikov and A. N. Naumov, Laser Phys. 10, 887 (2000).

    Google Scholar 

  30. A. N. Naumov and A. M. Zheltikov, J. Raman Spectrosc. 32, 960 (2001).

    Article  Google Scholar 

  31. A. N. Naumov and A. M. Zheltikov, Appl. Phys. B 77, 369 (2003).

    Article  ADS  Google Scholar 

  32. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984; Nauka, Moscow, 1989).

    Google Scholar 

  33. M. V. Alfimov, A. M. Zheltikov, A. A. Ivanov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 71, 714 (2000) [JETP Lett. 71, 489 (2000)].

    Google Scholar 

  34. A. N. Naumov, A. B. Fedotov, A. M. Zheltikov, et al., J. Opt. Soc. Am. B 19, 2183 (2002).

    ADS  Google Scholar 

  35. A. B. Fedotov, Ping Zhou, A. P. Tarasevitch, et al., J. Raman Spectrosc. 33, 888 (2002).

    Article  Google Scholar 

  36. D. A. Akimov, M. Schmitt, R. Maksimenka, et al., Appl. Phys. B 77, 299 (2003).

    Article  ADS  Google Scholar 

  37. A. M. Zheltikov, Ping Zhou, V. V. Temnov, et al., Quantum Electron. 32, 542 (2002).

    Article  Google Scholar 

  38. S. O. Konorov, O. A. Kolevatova, A. B. Fedotov, et al., Zh. Éksp. Teor. Fiz. 123, 975 (2003) [JETP 96, 857 (2003)].

    Google Scholar 

  39. S. Coen, A. Hing Lun Chau, R. Leonhardt, et al., J. Opt. Soc. Am. B 19, 753 (2002).

    ADS  Google Scholar 

  40. J. M. Dudley, L. Provino, N. Grossard, et al., J. Opt. Soc. Am. B 19, 765 (2002).

    ADS  Google Scholar 

  41. A. B. Fedotov, I. Bugar, D. A. Sidorov-Biryukov, et al., Appl. Phys. B 77, 313 (2003).

    Article  ADS  Google Scholar 

  42. S. O. Konorov, A. B. Fedotov, W. Boutu, et al., Laser Phys. 14, 100 (2004).

    Google Scholar 

  43. J. M. Dudley, X. Gu, L. Xu, et al., Opt. Express 10, 1215 (2002).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 126, No. 1, 2004, pp. 26–35.

Original Russian Text Copyright © 2004 by Konorov, Akimov, Ivanov, Alfimov, Zheltikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konorov, S.O., Akimov, D.A., Ivanov, A.A. et al. Femtosecond spectroscopy of coherent anti-Stokes Raman scattering with frequency-tunable chirped pulses generated in a microstructure fiber. J. Exp. Theor. Phys. 99, 19–27 (2004). https://doi.org/10.1134/1.1787074

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1787074

Keywords

Navigation