Skip to main content
Log in

Modulational instabilities in neutrino-antineutrino interactions

  • Nuclei, Particles, and Their Interaction
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Using a semiclassical approach, we analyze the collective behavior of neutrinos and antineutrinos in a dense background. Applying the Wigner transform technique, we show that the interaction can be modeled by a coupled system of nonlinear Vlasov-like equations. From these equations, we derive a dispersion relation for neutrino-antineutrino interactions on a general background. The dispersion relation admits a novel modulational instability. Moreover, we investigate the modifications of the instability due to thermal effects. The results are examined, together with a numerical example, and we discuss the induced density inhomogeneities using parameters relevant to the early Universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. R. Ahmad et al. (SNO Collab.), Phys. Rev. Lett. 89, 011301 (2002).

  2. A. D. Dolgov, Phys. Rep. 370, 333 (2002).

    Article  ADS  Google Scholar 

  3. Y. Sofue and V. C. Rubin, Annu. Rev. Astron. Astrophys. 39, 137 (2001).

    Article  ADS  Google Scholar 

  4. S. Tremaine and J. E. Gunn, Phys. Rev. Lett. 42, 407 (1979).

    Article  ADS  Google Scholar 

  5. G. G. Raffelt and J. Silk, Phys. Lett. B 192, 65 (1987).

    ADS  Google Scholar 

  6. F. Atrio-Barandela and S. Davidson, Phys. Rev. D 55, 5886 (1997).

    Article  ADS  Google Scholar 

  7. Y. Fukuda et al. (Super-Kamiokande Collab.), Phys. Rev. Lett. 81, 1562 (1998); Phys. Lett. B 436, 33 (1998); Phys. Rev. Lett. 82, 1810 (1999).

    ADS  Google Scholar 

  8. O. Elgaroy, O. Lahav, W. J. Percival, et al., Phys. Rev. Lett. 89, 061301 (2002).

    Google Scholar 

  9. S. Hannestad, Phys. Rev. D 66, 125011 (2002); K. N. Abazajian and S. Dodelson, Phys. Rev. Lett. 91, 041301 (2003).

  10. T. K. Kuo and J. Pantaleone, Rev. Mod. Phys. 61, 937 (1989).

    Article  ADS  Google Scholar 

  11. L. O. Silva, R. Bingham, J. M. Dawson, et al., Astrophys. J. 127, 481 (2000).

    ADS  Google Scholar 

  12. H. A. Weldon, Phys. Rev. D 26, 2789 (1982).

    ADS  Google Scholar 

  13. D. Nötzhold and G. Raffelt, Nucl. Phys. B 307, 924 (1988).

    ADS  Google Scholar 

  14. H. Nunokawa, V. B. Semikoz, A. Y. Smirnov, and J. W. F. Valle, Nucl. Phys. B 501, 17 (1997).

    Article  ADS  Google Scholar 

  15. G. G. Raffelt, Stars as Laboratories for Fundamental Physics (Univ. of Chicago Press, Chicago, 1996).

    Google Scholar 

  16. N. L. Tsintsadze, J. T. Mendonca, and L. N. Tsintsadze, Phys. Plasmas 5, 3512 (1998); P. K. Shukla, L. Stenflo, L. N. Tsintsadze, and N. L. Tsintsadze, Phys. Plasmas 9, 3625 (2002).

    ADS  Google Scholar 

  17. V. I. Karpman, Nonlinear Waves in Dispersive Media (Nauka, Moscow, 1973; Pergamon, Oxford, 1975).

    Google Scholar 

  18. A. Hasegawa, Plasma Instabilities and Nonlinear Effects (Springer, Berlin, 1975).

    Google Scholar 

  19. M. Marklund, P. K. Shukla, and L. Stenflo, Phys. Scr. (2004) (in press).

  20. J. Pantaleone, Phys. Lett. B 342, 250 (1995).

    ADS  Google Scholar 

  21. E. P. Wigner, Phys. Rev. 40, 749 (1932); J. E. Moyal, Proc. Cambridge Philos. Soc. 45, 99 (1949); V. B. Semikoz, Physica A (Amsterdam) 142, 157 (1987).

    Article  ADS  MATH  Google Scholar 

  22. D. Anderson, L. Helczynski, M. Lisak, and V. Semenov, Phys. Rev. E 69, 025601 (2004).

    Google Scholar 

  23. B. Carr, Annu. Rev. Astron. Astrophys. 32, 531 (1994).

    Article  ADS  Google Scholar 

  24. Ya. B. Zel’dovich and R. A. Syunyaev, Sov. Astron. Lett. 6, 249 (1980); A. G. Doroshkevich, Ya. B. Zel’dovich, R. A. Syunyaev, and M. Yu. Khlopov, Sov. Astron. Lett. 6, 252 (1980); Sov. Astron. Lett. 6, 257 (1980); P. J. E. Peebles, Astrophys. J. 258, 415 (1982); S. D. M. White, C. S. Frenk, and M. Davis, Astrophys. J. Lett. 274, L1 (1983); G. G. Raffelt, New Astron. Rev. 46, 699 (2002).

    ADS  Google Scholar 

  25. P. J. E. Peebles, Principles of Physical Cosmology (Princeton Univ. Press, Princeton, 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 126, No. 1, 2004, pp. 14–25.

Original English Text Copyright © 2004 by Marklund, Shukla, Betschart, Stenflo, Anderson, Lisak.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marklund, M., Shukla, P.K., Betschart, G. et al. Modulational instabilities in neutrino-antineutrino interactions. J. Exp. Theor. Phys. 99, 9–18 (2004). https://doi.org/10.1134/1.1787073

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1787073

Keywords

Navigation