Skip to main content
Log in

The Vogel-Fulcher law as a criterion for identifying a mixed ferroelectric-glass phase in potassium tantalate doped with lithium

  • Magnetism and Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The dynamic dielectric response and the nonlinear dielectric susceptibility of K1−x LixTaO3 (x=0.010, 0.016, 0.030) compounds are measured in a dc electric field in the temperature range 4≤T≤150 K. It is found that the permittivity ɛ′ of K1−x LixTaO3 samples with two lower concentrations of lithium impurities decreases in an electric field E. For samples with a lithium concentration x=0.030, the permittivity ɛ′ decreases in electric fields E>1 kV/cm and increases in fields E<0.5 kV/cm. The observed dependences of the maximum of the permittivity on the temperature and the frequency of the measuring field obey the Arrhenius law for samples with lower concentrations of lithium impurities (x=0.010, 0.016) and the Vogel-Fulcher law for samples with a higher lithium concentration (x=0.030). The results of the theoretical treatment performed in the framework of the random-field theory are consistent with the experimental data. It is established that the Arrhenius law is valid for dipole glass phases, whereas the Vogel-Fulcher law holds true for a mixed ferroelectric-glass phase in which the short-range and long-range polar orders coexist. The inference is made that the results of measurements of the dielectric response can be used to identify a mixed ferroelectric-glass phase in any disordered ferroelectric material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. E. Vugmeister and M. D. Glinchuk, Rev. Mod. Phys. 62(4), 993 (1990).

    Article  ADS  Google Scholar 

  2. U. T. Hochli, K. Knorr, and A. Loidl, Adv. Phys. 39(5), 405 (1990).

    ADS  Google Scholar 

  3. W. Kleemann, Int. J. Mod. Phys. 7(13), 2469 (1993).

    ADS  Google Scholar 

  4. M. D. Glinchuk and V. A. Stephanovich, J. Phys.: Condens. Matter 6, 6317 (1994).

    ADS  Google Scholar 

  5. M. D. Glinchuk and V. A. Stephanovich, J. Phys.: Condens. Matter 10, 11081 (1998).

    Google Scholar 

  6. A. E. Glazunov and A. K. Tagansev, Ferroelectrics 201, 305 (1997).

    Google Scholar 

  7. W. Kleemann, S. Kutz, and D. Rytz, Europhys. Lett. 4(2), 239 (1987).

    ADS  Google Scholar 

  8. S. R. Andrews, J. Phys.: Condens. Matter 18, 1357 (1985).

    Google Scholar 

  9. M. D. Glinchuk, E. A. Eliseev, and V. A. Stefanovich, Fiz. Tverd. Tela (St. Petersburg) 44(5), 912 (2002) [Phys. Solid State 44, 953 (2002)].

    Google Scholar 

  10. M. D. Glinchuk, R. Farhi, and V. A. Stephanovich, J. Phys.: Condens. Matter 9, 10237 (1997).

    Google Scholar 

  11. J. J. van der Klink, D. Rytz, F. Borsa, and U. T. Hochli, Phys. Rev. B 27(1), 89 (1983).

    ADS  Google Scholar 

  12. M. D. Glinchuk and V. A. Stephanovich, Ferroelectrics 169, 281 (1995).

    Google Scholar 

  13. M. D. Glinchuk and V. A. Stephanovich, Ferroelectr. Lett. Sect. 22, 113 (1997).

    Google Scholar 

  14. G. A. Samara, Phys. Rev. Lett. 53(2), 298 (1984).

    ADS  Google Scholar 

  15. B. D. Viehland, S. Jang, and L. E. Cross, Philos. Mag. B 64(3), 335 (1991).

    Google Scholar 

  16. E. Glazunov and A. K. Tagansev, Appl. Phys. Lett. 73(6), 856 (1998).

    ADS  Google Scholar 

  17. U. T. Hochli, D. Rytz, J. J. Van der Klink, and F. Borsa, Solid State Commun. 49(9), 863 (1984).

    Google Scholar 

  18. Y. Yacoby, A. Agranat, and I. Ohana, Solid State Commun. 45(8), 757 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 46, No. 7, 2004, pp. 1224–1230.

Original Russian Text Copyright © 2004 by Laguta, Glinchuk, Kondakova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laguta, V.V., Glinchuk, M.D. & Kondakova, I.V. The Vogel-Fulcher law as a criterion for identifying a mixed ferroelectric-glass phase in potassium tantalate doped with lithium. Phys. Solid State 46, 1262–1269 (2004). https://doi.org/10.1134/1.1778451

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1778451

Keywords

Navigation