Skip to main content
Log in

Variations of microwave emission from solar active regions

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Based on observational data obtained with the RT-22 Crimean Astrophysical Observatory radio telescope at frequencies of 8.6 and 15.4 GHz, we investigate the quasi-periodic variations of microwave emission from solar active regions with periods T p<10 min. As follows from our wavelet analysis, the oscillations with periods of 3–5 min and 10–40 s have the largest amplitudes in the dynamic power spectra, while there are virtually no oscillations with T p<10 s. Our analysis shows that acoustic modes with T p≲1 min strongly dissipate in the lower solar corona due to thermal conduction losses. The oscillations with T p=10–40 s are associated with Alfvén disturbances. We analyze the influence of acoustic and Alfvén oscillations on the thermal mechanisms of microwave emission in terms of the homogeneous model. We discuss the probable coronal heating sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. E. Alissandrakis, M. R. Kundu, and P. Lantos, Astron. Astrophys. 82, 30 (1980).

    ADS  Google Scholar 

  2. M. J. Aschwanden, Astrophys. J. 560, 1035 (2001).

    Article  ADS  Google Scholar 

  3. N. V. Baranov, M. A. Mironov, P. S. Nikitin, and L. I. Tsvetkov, Kinemat. Fiz. Neb. Tel 14, 89 (1998).

    Google Scholar 

  4. S. I. Braginskii, Vopr. Teor. Plazmy 1, 183 (1963).

    Google Scholar 

  5. N. Brynildsen, D. Kjeldseth-Moe, and P. Maltby, Astrophys. J. 517, 159 (1999).

    Article  ADS  Google Scholar 

  6. G. B. Gelfreikh, V. Grechnev, T. Kosugi, and K. Shibasaki, Solar Phys. 185, 177 (1999).

    Article  ADS  Google Scholar 

  7. B. E. Gordon and J. V. Hollweg, Astrophys. J. 266, 373 (1983).

    Article  ADS  Google Scholar 

  8. J. Heyvaerts and E. R. Priest, Astron. Astrophys. 117, 220 (1983).

    ADS  Google Scholar 

  9. J. Hildebrandt and J. Staude, Poster Proceedings of the 1st Potsdam Thinkshop on Sunspots and Starspots, Ed. by K. G. Strassmeier and A. Washuettl (Astrophys. Inst. Potsdam, 2002), p. 95.

  10. H. S. Hudson, Solar Phys. 133, 357 (1991).

    ADS  Google Scholar 

  11. J. Ireland, R. W. Walsh, R. A. Harrison, and E. R. Priest, Astron. Astrophys. 347, 355 (1999).

    ADS  Google Scholar 

  12. D. B. King, V. M. Nakariakov, E. E. Deluca, et al., Astron. Astrophys. 404, L1 (2003).

    Article  ADS  Google Scholar 

  13. I. De Moortel, J. Ireland, and R. W. Walsh, Astron. Astrophys. 355, L23 (2000).

    ADS  Google Scholar 

  14. I. De Moortel, J. Ireland, A. W. Hood, and R. W. Walsh, Astron. Astrophys. 387, L13 (2002).

    ADS  Google Scholar 

  15. V. M. Nakariakov and L. Ofman, Astron. Astrophys. 372, L53 (2001).

  16. V. M. Nakariakov, E. Verwichte, D. Berghmans, and E. Robbrecht, Astron. Astrophys. 362, 1151 (2000).

    ADS  Google Scholar 

  17. A. Nindos, C. E. Alissandrakis, G. B. Gelfreikh, et al., Astron. Astrophys. 386, 658 (2002).

    Article  ADS  Google Scholar 

  18. E. N. Parker, Astrophys. J. 330, 474 (1988).

    Article  ADS  Google Scholar 

  19. S. Poedts, in Proceedings of the SOLMAG: Magnetic Coupling of the Solar Atmosphere Euroconference IAU Coll. No. 188, Ed. by H. Sawaya-Lacoste (ESA Publ. Div., Noordwijk, 2002), ESA SP-505, p. 273.

    Google Scholar 

  20. B. De Pontieu, P. C. Martens, and H. S. Hudson, Astrophys. J. 558, 859 (2001).

    ADS  Google Scholar 

  21. L. J. Porter, A. Klimchuk, and P. A. Sturrock, Astrophys. J. 435, 482 (1994).

    ADS  Google Scholar 

  22. E. R. Priest, SolarMagnetohydrodynamics (Reidel, Dordrecht, 1982; Mir, Moscow, 1985).

    Google Scholar 

  23. E. R. Priest, J. F. Heyvaerts, and A. M. Title, Astrophys. J. 576, 533 (2002).

    Article  ADS  Google Scholar 

  24. B. Roberts, Solar Phys. 193, 139 (2000).

    Article  ADS  Google Scholar 

  25. P. Rudawy, K. J. H. Phillips, P. Read, et al., in Proceedings of the 10th Europian SolarPhysics Meeting, Ed. by A. Wilson (ESA Publ. Div., Noordwijk, 2002), ESA SP-506, p. 967.

    Google Scholar 

  26. K. Shibasaki, Astrophys. J. 550, 1113 (2001).

    Article  ADS  Google Scholar 

  27. J. Staude, ASP Conf. Ser. 184, 113 (1999).

    ADS  Google Scholar 

  28. D. Tsiklauri and V. M. Nakariakov, Astron. Astrophys. 379, 1106 (2001).

    ADS  Google Scholar 

  29. V. V. Vityazev, Wavelet Analysis of Time Series (St. Petersburg Univ., St. Petersburg, 2001) [in Russian].

    Google Scholar 

  30. S. M. White and M. R. Kundu, Solar Phys. 174, 53 (1997).

    Article  Google Scholar 

  31. V. G. Zandanov, T. A. Treskov, and A. M. Uralov, Issled. Geomagn. Aeronomii Fiz. Solntsa 68, 21 (1984).

    ADS  Google Scholar 

  32. V. V. Zheleznyakov, Izv. Vyssh. Uchebn. Zaved., Ser. Radiofiz. 7, 67 (1964).

    Google Scholar 

  33. V. V. Zheleznyakov, Electromagnetic Waves in Cosmic Plasma (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis'ma v Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Zhurnal, Vol. 30, No. 7, 2004, pp. 540–547.

Original Russian Text Copyright © 2004 by Gelfreikh, Tsap, Kopylova, Goldvarg, Nagovitsyn, Tsvetkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gelfreikh, G.B., Tsap, Y.T., Kopylova, Y.G. et al. Variations of microwave emission from solar active regions. Astron. Lett. 30, 489–495 (2004). https://doi.org/10.1134/1.1774401

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1774401

Key words

Navigation