Skip to main content
Log in

Superconductivity in the pseudogap state in the hot-spot model: Ginzburg-Landau expansion

  • Solids
  • Electronic Properties
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Peculiarities of the superconducting state (s and d pairing) are considered in the model of the pseudogap state induced by short-range order fluctuations of the dielectric (AFM (SDW) or CDW) type, which is based on the model of the Fermi surface with “hot spots.” A microscopic derivation of the Ginzburg-Landau expansion is given with allowance for all Feynman diagrams in perturbation theory in the electron interaction with short-range order fluctuations responsible for strong scattering in the vicinity of hot spots. The superconducting transition temperature is determined as a function of the effective pseudogap width and the correlation length of short-range order fluctuations. Similar dependences are derived for the main parameters of a superconductor in the vicinity of the superconducting transition temperature. It is shown, in particular, that the specific heat jump at the transition point is considerably suppressed upon a transition to the pseudogap region on the phase diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 (1999).

    Article  ADS  Google Scholar 

  2. M. V. Sadovskii, Usp. Fiz. Nauk 171, 539 (2001) [Phys. Usp. 44, 515 (2001)].

    Google Scholar 

  3. J. L. Tallon and J. W. Loram, Physica C (Amsterdam) 349, 53 (2000).

    ADS  Google Scholar 

  4. V. M. Krasnov, A. Yurgens, D. Winkler, et al., Phys. Rev. Lett. 84, 5860 (2000).

    Article  ADS  Google Scholar 

  5. N. P. Armitage, D. H. Lu, C. Kim, et al., Phys. Rev. Lett. 87, 147003 (2001).

  6. J. Schmalian, D. Pines, and B. Stojkovic, Phys. Rev. Lett. 80, 3839 (1998); Phys. Rev. B 60, 667 (1999).

    Article  ADS  Google Scholar 

  7. É. Z. Kuchinskii and M. V. Sadovskii, Zh. Éksp. Teor. Fiz. 115, 1765 (1999) [JETP 88, 968 (1999)].

    Google Scholar 

  8. A. I. Posazhennikova and M. V. Sadovskii, Zh. Éksp. Teor. Fiz. 115, 632 (1999) [JETP 88, 347 (1999)].

    Google Scholar 

  9. É. Z. Kuchinskii and M. V. Sadovskii, Zh. Éksp. Teor. Fiz. 117, 613 (2000) [JETP 90, 535 (2000)].

    Google Scholar 

  10. É. Z. Kuchinskii and M. V. Sadovskii, Zh. Éksp. Teor. Fiz. 119, 553 (2001) [JETP 92, 480 (2001)].

    Google Scholar 

  11. É. Z. Kuchinskii and M. V. Sadovskii, Zh. Éksp. Teor. Fiz. 121, 758 (2002) [JETP 94, 654 (2002)].

    Google Scholar 

  12. P. Monthoux, A. V. Balatsky, and D. Pines, Phys. Rev. B 46, 14803 (1992).

    Google Scholar 

  13. P. Monthoux and D. Pines, Phys. Rev. B 47, 6069 (1993); 49, 4261 (1994).

    Article  ADS  Google Scholar 

  14. M. V. Sadovskii, Zh. Éksp. Teor. Fiz. 66, 1720 (1974) [Sov. Phys. JETP 39, 845 (1974)]; Fiz. Tverd. Tela (Leningrad) 16, 2504 (1974) [Sov. Phys. Solid State 16, 1632 (1974)].

    Google Scholar 

  15. M. V. Sadovskii, Zh. Éksp. Teor. Fiz. 77, 2070 (1979) [Sov. Phys. JETP 50, 989 (1979)].

    Google Scholar 

  16. L. P. Gor’kov, Zh. Éksp. Teor. Fiz. 37, 1407 (1959) [Sov. Phys. JETP 10, 998 (1959)].

    MathSciNet  Google Scholar 

  17. P. G. de Gennes, Superconductivity of Metals and Alloys (Benjamin, New York, 1966; Mir, Moscow, 1968).

    Google Scholar 

  18. M. V. Sadovskii and A. A. Timofeev, Sverkhprovodimost: Fiz. Khim. Tekh. 4, 11 (1991); J. Mosc. Phys. Soc. 1, 391 (1991).

    Google Scholar 

  19. M. V. Sadovskii and N. A. Strigina, Zh. Éksp. Teor. Fiz. 122, 610 (2002) [JETP 95, 526 (2002)].

    Google Scholar 

  20. E. Müller-Hartmann and J. Zittartz, Phys. Rev. Lett. 26, 428 (1971).

    Article  ADS  Google Scholar 

  21. D. St. James, G. Sarma, and E. J. Thomas, Type II Super-conductivity (Pergamon Press, Oxford, 1969; Mir, Moscow, 1970).

    Google Scholar 

  22. J. W. Loram, K. A. Mirza, J. R. Cooper, et al., J. Supercond. 7, 243 (1994).

    Article  Google Scholar 

  23. A. Posazhennikova and P. Coleman, Phys. Rev. B 67, 165109 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 125, No. 4, 2004, pp. 854–867.

Original Russian Text Copyright © 2004 by Kuchinski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\), Sadovski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\), Strigina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuchinskii, É.Z., Sadovskii, M.V. & Strigina, N.A. Superconductivity in the pseudogap state in the hot-spot model: Ginzburg-Landau expansion. J. Exp. Theor. Phys. 98, 748–759 (2004). https://doi.org/10.1134/1.1757675

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1757675

Keywords

Navigation