Skip to main content
Log in

Phase transition in a self-repairing random network

  • Condensed Matter
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

We consider a network the bonds of which are being sequentially removed; this is done at random but conditioned on the system remaining connected (self-repairing bond percolation, SRBP). This model is the simplest representative of a class of random systems for which the formation of isolated clusters is forbidden. It qualitatively describes the process of fabrication of artificial porous materials and degradation of strained polymers. We find a phase transition at a finite concentration of bonds p=p c , at which the backbone of the system vanishes; for all p< p c , the network is a dense fractal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor and Fransis, London, 1994).

    Google Scholar 

  2. A. Bunde and S. Havlin, in Fractals and Disordered Systems, Ed. by A. Bunde and S. Havlin (Springer, Berlin, 1996).

    Google Scholar 

  3. Disorder and Granular Media, Ed. by D. Bideau and A. Hansen (North-Holland, Amsterdam, 1993).

  4. Handbook of Material Weathering, Ed. by G. Wypych, 3rd ed. (William Andrew, Norwich, N.Y., 2003); The Effect of UV Light and Weather on Plastics and Elastomers (PDL Staff, Plastics Design Library, 1994).

    Google Scholar 

  5. S. S. Manna and B. Subramanian, Phys. Rev. Lett. 76, 3460 (1996).

    Article  ADS  Google Scholar 

  6. R. Dobrin and P. M. Duxbury, Phys. Rev. Lett. 86, 5076 (2001).

    Article  ADS  Google Scholar 

  7. H. N. V. Temperley and E. H. Lieb, Proc. R. Soc. London, Ser. A 322, 251 (1971).

    ADS  MathSciNet  Google Scholar 

  8. R. M. Ziff, S. Finch, and V. Adamchik, Phys. Rev. Lett. 79, 3447 (1997).

    Article  ADS  Google Scholar 

  9. F. Harary, Graph Theory (Addison-Wesley, Reading, Mass., 1969; Mir, Moscow, 1973).

    Google Scholar 

  10. P. Grassberger, Physica A (Amsterdam) 262, 251 (1999).

    Google Scholar 

  11. C. M. Newman and D. L. Stein, Phys. Rev. Lett. 72, 2286 (1994).

    Article  ADS  Google Scholar 

  12. M. Cieplak, A. Maritan, and J. R. Banavar, Phys. Rev. Lett. 76, 3754 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 79, No. 5, 2004, pp. 286–290.

Original English Text Copyright © 2004 by Ioselevich, Lyubshin.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ioselevich, A.S., Lyubshin, D.S. Phase transition in a self-repairing random network. Jetp Lett. 79, 231–235 (2004). https://doi.org/10.1134/1.1753422

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1753422

PACS numbers

Navigation