Abstract
Photon-photon scattering, due to photons interacting with virtual electron-positron pairs, is an intriguing deviation from classical electromagnetism predicted by quantum electrodynamics (QED). Apart from being of fundamental interest in itself, collisions between photons are believed to be of importance in the vicinity of magnetars, in the present generation intense lasers, and in intense laser-plasma/matter interactions, the latter recreating astrophysical conditions in the laboratory. We show that an intense photon pulse propagating through a radiation gas can self-focus and, under certain circumstances, collapse. This is due to the response of the radiation background, creating a potential well in which the pulse gets trapped, giving rise to photonic solitary structures. When the radiation gas intensity has reached its peak values, the gas releases part of its energy into “photon wedges,” similar to Cherenkov radiation. The results should be of importance for the present generation of intense lasers and for the understanding of localized gamma-ray bursts in astrophysical environments. They could furthermore test the predictions of QED and give means to create ultraintense photonic pulses.
Similar content being viewed by others
References
J. Schwinger, Phys. Rev. 82, 664 (1951).
Y. S. Kivshar and G. P. Agrawal, Optical Solitons (Academic, San Diego, 2003).
S. L. Adler, J. N. Bahcall, C. G. Callan, and M. N. Rosenbluth, Phys. Rev. Lett. 25, 1061 (1970).
M. G. Baring and A. K. Harding, Astrophys. J. 507, L55 (1998).
A. K. Harding, Science 251, 1033 (1991).
C. Kouveliotou, S. Dieters, T. Strohmayer, et al., Nature 393, 235 (1998).
Y. J. Ding and A. E. Kaplan, Phys. Rev. Lett. 63, 2725 (1989).
N. N. Rozanov, Zh. Éksp. Teor. Fiz. 113, 513 (1998) [JETP 86, 284 (1998)].
G. Brodin, M. Marklund, and L. Stenflo, Phys. Rev. Lett. 87, 171801 (2001).
M. Marklund, G. Brodin, and L. Stenflo, Phys. Rev. Lett. 91, 163601 (2003).
P. Chernev and V. Petrov, Opt. Lett. 17, 172 (1992).
J. E. Rothenberg, Opt. Lett. 17, 583 (1992).
J. K. Ranka, R. W. Schirmer, and A. L. Gaeta, Phys. Rev. Lett. 77, 3783 (1996).
Y. Silberberg, Opt. Lett. 15, 1282 (1990).
A. L. Gaeta, Phys. Rev. Lett. 84, 3582 (2000).
G. A. Mourou, C. P. J. Barty, and M. D. Perry, Phys. Today 51, 22 (1998).
S. C. Wilks, J. M. Dawson, W. B. Mori, et al., Phys. Rev. Lett. 62, 2600 (1989).
N. L. Tsintsadze, J. T. Mendonça, and L. O. Silva, Phys. Rev. E 58, 4890 (1998).
J. T. Mendonça, Photon Acceleration (Inst. of Physics, Bristol, 2001).
A. Pukhov, Rep. Prog. Phys. 66, 47 (2003).
V. Malka, S. Fritzler, E. Lefebvre, et al., Science 298, 1596 (2002).
A. Pukhov, S. Gordienko, and T. Baeva, Phys. Rev. Lett. 91, 173002 (2003).
R. Bingham, Nature 424, 258 (2003).
S. V. Bulanov, T. Esirkepov, and T. Tajima, Phys. Rev. Lett. 91, 085001 (2003).
V. I. Karpman, Plasma Phys. 13, 477 (1971).
V. I. Karpman, Non-Linear Waves in Dispersive Media (Nauka, Moscow, 1973; Pergamon Press, Oxford, 1975).
D. D. Tskhakaia, Phys. Rev. Lett. 48, 484 (1982).
S. Tzortzakis, L. Sudrie, M. Franco, et al., Phys. Rev. Lett. 87, 213902 (2001).
V. N. Kondratyev, Phys. Rev. Lett. 88, 221101 (2002).
T. Piran, Phys. Rep. 314, 575 (1999).
Author information
Authors and Affiliations
Additional information
From Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 79, No. 5, 2004, pp. 262–266.
Original English Text Copyright © 2004 by Marklund, Eliasson, Shukla.
This article was submitted by the authors in English.