Skip to main content
Log in

Self-compression and catastrophic collapse of photon bullets in vacuum

  • Nonlinear Dynamics
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

Photon-photon scattering, due to photons interacting with virtual electron-positron pairs, is an intriguing deviation from classical electromagnetism predicted by quantum electrodynamics (QED). Apart from being of fundamental interest in itself, collisions between photons are believed to be of importance in the vicinity of magnetars, in the present generation intense lasers, and in intense laser-plasma/matter interactions, the latter recreating astrophysical conditions in the laboratory. We show that an intense photon pulse propagating through a radiation gas can self-focus and, under certain circumstances, collapse. This is due to the response of the radiation background, creating a potential well in which the pulse gets trapped, giving rise to photonic solitary structures. When the radiation gas intensity has reached its peak values, the gas releases part of its energy into “photon wedges,” similar to Cherenkov radiation. The results should be of importance for the present generation of intense lasers and for the understanding of localized gamma-ray bursts in astrophysical environments. They could furthermore test the predictions of QED and give means to create ultraintense photonic pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Schwinger, Phys. Rev. 82, 664 (1951).

    ADS  MATH  MathSciNet  Google Scholar 

  2. Y. S. Kivshar and G. P. Agrawal, Optical Solitons (Academic, San Diego, 2003).

    Google Scholar 

  3. S. L. Adler, J. N. Bahcall, C. G. Callan, and M. N. Rosenbluth, Phys. Rev. Lett. 25, 1061 (1970).

    Article  ADS  Google Scholar 

  4. M. G. Baring and A. K. Harding, Astrophys. J. 507, L55 (1998).

    Article  ADS  Google Scholar 

  5. A. K. Harding, Science 251, 1033 (1991).

    ADS  Google Scholar 

  6. C. Kouveliotou, S. Dieters, T. Strohmayer, et al., Nature 393, 235 (1998).

    Article  ADS  Google Scholar 

  7. Y. J. Ding and A. E. Kaplan, Phys. Rev. Lett. 63, 2725 (1989).

    Article  ADS  Google Scholar 

  8. N. N. Rozanov, Zh. Éksp. Teor. Fiz. 113, 513 (1998) [JETP 86, 284 (1998)].

    Google Scholar 

  9. G. Brodin, M. Marklund, and L. Stenflo, Phys. Rev. Lett. 87, 171801 (2001).

    Google Scholar 

  10. M. Marklund, G. Brodin, and L. Stenflo, Phys. Rev. Lett. 91, 163601 (2003).

    Google Scholar 

  11. P. Chernev and V. Petrov, Opt. Lett. 17, 172 (1992).

    ADS  Google Scholar 

  12. J. E. Rothenberg, Opt. Lett. 17, 583 (1992).

    ADS  Google Scholar 

  13. J. K. Ranka, R. W. Schirmer, and A. L. Gaeta, Phys. Rev. Lett. 77, 3783 (1996).

    Article  ADS  Google Scholar 

  14. Y. Silberberg, Opt. Lett. 15, 1282 (1990).

    ADS  Google Scholar 

  15. A. L. Gaeta, Phys. Rev. Lett. 84, 3582 (2000).

    Article  ADS  Google Scholar 

  16. G. A. Mourou, C. P. J. Barty, and M. D. Perry, Phys. Today 51, 22 (1998).

    ADS  Google Scholar 

  17. S. C. Wilks, J. M. Dawson, W. B. Mori, et al., Phys. Rev. Lett. 62, 2600 (1989).

    Article  ADS  Google Scholar 

  18. N. L. Tsintsadze, J. T. Mendonça, and L. O. Silva, Phys. Rev. E 58, 4890 (1998).

    Article  ADS  Google Scholar 

  19. J. T. Mendonça, Photon Acceleration (Inst. of Physics, Bristol, 2001).

    Google Scholar 

  20. A. Pukhov, Rep. Prog. Phys. 66, 47 (2003).

    Article  ADS  Google Scholar 

  21. V. Malka, S. Fritzler, E. Lefebvre, et al., Science 298, 1596 (2002).

    Article  ADS  Google Scholar 

  22. A. Pukhov, S. Gordienko, and T. Baeva, Phys. Rev. Lett. 91, 173002 (2003).

    Google Scholar 

  23. R. Bingham, Nature 424, 258 (2003).

    Article  ADS  Google Scholar 

  24. S. V. Bulanov, T. Esirkepov, and T. Tajima, Phys. Rev. Lett. 91, 085001 (2003).

    Google Scholar 

  25. V. I. Karpman, Plasma Phys. 13, 477 (1971).

    Article  ADS  Google Scholar 

  26. V. I. Karpman, Non-Linear Waves in Dispersive Media (Nauka, Moscow, 1973; Pergamon Press, Oxford, 1975).

    Google Scholar 

  27. D. D. Tskhakaia, Phys. Rev. Lett. 48, 484 (1982).

    Article  ADS  Google Scholar 

  28. S. Tzortzakis, L. Sudrie, M. Franco, et al., Phys. Rev. Lett. 87, 213902 (2001).

  29. V. N. Kondratyev, Phys. Rev. Lett. 88, 221101 (2002).

    Google Scholar 

  30. T. Piran, Phys. Rep. 314, 575 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 79, No. 5, 2004, pp. 262–266.

Original English Text Copyright © 2004 by Marklund, Eliasson, Shukla.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marklund, M., Eliasson, B. & Shukla, P.K. Self-compression and catastrophic collapse of photon bullets in vacuum. Jetp Lett. 79, 208–212 (2004). https://doi.org/10.1134/1.1753417

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1753417

PACS numbers

Navigation