Skip to main content
Log in

Variations in the solar luminosity, radius, and quadrupole moment as effects of a large-scale dynamo in the solar convection zone

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The effect of large-scale magnetic fields generated by the solar dynamo on the irradiance of the Sun and stratification of the solar convection zone is studied using a numerical model of a spherical axisymmetric dynamo. This model provides a joint description of the generation of large-scale magnetic fields, differential rotation, and convective heat transfer taking into account energy transformations associated with the large-scale magnetic fields, as well as the stratification of the convection zone. The model further develops a previously suggested self-consistent approach to analyzing solar luminosity variations, based on the conservation of the energy of the large-scale magnetic fields and turbulent flows. The results indicate that the increase in the solar luminosity near the maximum of the cycle is mainly due to the dissipation of the energy of magnetic fields escaping to above the photosphere, with the partial conversion of this energy into radiation. In addition, near-photospheric magnetic fields strongly affect the latitudinal nonuniformity of the cyclic variations in the radiative flux. The large-scale magnetic field also influences the hydrostatic equilibrium of the convection zone and gives rise to 11-year variations in the sound speed with a relative amplitude of 10−3. The cyclic magnetic activity generates oscillations in the quadrupole moment with an amplitude of 4.5 × 10−9(GM /R ). According to our estimates, the variations in the solar radius are very small, ∼10−6 R . Our numerical model is used to estimate the variations in the orbital periods of close binaries whose primaries have the same spectral class as the Sun. Modulation of the centrifugal force by torsional oscillations can provide a plausible explanation for variations in the orbital periods of the companion stars in these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. Wilson, Space Sci. Rev. 38, 203 (1984).

    ADS  Google Scholar 

  2. R. C. Wilson and A. V. Mordvinov, Geophys. Res. Lett. 26, 3613 (1999).

    ADS  Google Scholar 

  3. H. Spruit, Space Sci. Rev. 94, 113 (2000).

    Article  ADS  Google Scholar 

  4. M. Stix, Astron. Astrophys. 93, 339 (1981).

    ADS  Google Scholar 

  5. V. V. Pipin and L. L. Kichatinov, Astron. Zh. 77, 872 (2000) [Astron. Rep. 44, 771 (2000)].

    Google Scholar 

  6. L. L. Kitchatinov, A. V. Mordvinov, and V. V. Pipin, Soln.-Zemnaya Fiz. 2, 3 (2002).

    Google Scholar 

  7. N. J. Balmforth, D. O. Gough, and W. J. Merryfield, Mon. Not. R. Astron. Soc. 278, 437 (1996).

    ADS  Google Scholar 

  8. J. Pap, J. P. Rozelot, S. Godier, and F. Varadi, Astron. Astrophys. 372, 1005 (2001).

    ADS  Google Scholar 

  9. D. Basu, Sol. Phys. 183, 291 (1998).

    Article  ADS  Google Scholar 

  10. J. P. Rozelot, J. Atmos. Sol.-Terr. Phys. 63, 375 (2001).

    ADS  Google Scholar 

  11. E. R. Neto, A. H. Andrei, J. L. Penna, et al., Sol. Phys. 212, 7 (2003).

    ADS  Google Scholar 

  12. R. L. Gilligand, Astrophys. J. 248, 1144 (1981).

    ADS  Google Scholar 

  13. P. Delache, F. Laclare, and H. Sadsaoud, Nature 317, 416 (1985).

    Article  ADS  Google Scholar 

  14. R. K. Ulrich and L. Bertello, Nature 377, 214 (1995).

    Article  ADS  Google Scholar 

  15. E. Ribes, J. C. Ribes, and R. Barthalot, Nature 326, 52 (1987).

    Article  ADS  Google Scholar 

  16. F. Krause and K.-H. Rädler, Mean Field Magnetohydrodynamics and Dynamo Theory (Pergamon Press, Oxford, 1980).

    Google Scholar 

  17. L. L. Kitchatinov, V. V. Pipin, and G. Rüdiger, Astron. Nachr. 315(2), 157 (1994).

    ADS  Google Scholar 

  18. G. Rüdiger and L. L. Kitchatinov, Astron. Astrophys. 269, 581 (1993).

    ADS  Google Scholar 

  19. L. L. Kitchatinov, M. V. Mazur, and M. Jardine, Astron. Astrophys. 359, 531 (2000).

    ADS  Google Scholar 

  20. L. L. Kitchatinov and G. Rüdiger, Astron. Astrophys. 344, 911 (1999).

    ADS  Google Scholar 

  21. G. Rüdger, Differential Rotation and Stellar Convection (Akademie-Verlag, Berlin, 1989).

    Google Scholar 

  22. L. L. Kitchatinov, V. V. Pipin, V. I. Makarov, and A. G. Tlatov, Sol. Phys. 189, 227 (1999).

    Article  ADS  Google Scholar 

  23. V. Pipin, Astron. Astrophys. 346, 295 (1999).

    ADS  Google Scholar 

  24. L. L. Kitchatinov and V. V. Pipin, Astron. Astrophys. 274, 647 (1993).

    ADS  Google Scholar 

  25. M. Stix, The Sun. An Introduction, 2nd ed. (Springer, Berlin, 2002).

    Google Scholar 

  26. G. Rüdiger and L. L. Kitchatinov, Astron. Nachr. 321, 75 (2000).

    ADS  Google Scholar 

  27. J. Schou, S. Antia, R. S. Basu, et al., Astrophys. J. 505, 390 (1998).

    Article  ADS  Google Scholar 

  28. A. Brandenburg, D. Moss, and I. Tuominen, Astron. Astrophys. 265, 328 (1992).

    ADS  Google Scholar 

  29. M. Kueker, G. Ruediger, and V. V. Pipin, Astron. Astrophys. 312, 615 (1996).

    ADS  Google Scholar 

  30. B. J. LaBonte and R. Howard, Sol. Phys. 75, 161 (1982).

    Article  ADS  Google Scholar 

  31. S. V. Vorontsov, J. Christensen-Dalsgaard, J. Shou, et al., Science 296, 101 (2002).

    Article  ADS  Google Scholar 

  32. Y. Elsworth, R. Howe, G. R. Isaak, et al., Nature 345, 322 (1990).

    Article  ADS  Google Scholar 

  33. C. J. Schrijver and K. L. Harvey, Sol. Phys. 150, 1 (1984).

    ADS  Google Scholar 

  34. A. V. Mordvinov and R. C. Willson, Sol. Phys. 215, 5 (2003).

    Article  ADS  Google Scholar 

  35. J.-P. Zahn, Astron. Astrophys. 57, 383 (1977).

    ADS  Google Scholar 

  36. J. H. Applegate, Astrophys. J. 385, 621 (1992).

    Article  ADS  Google Scholar 

  37. A. F. Lanza, M. Rodono, and R. Rosner, Mon. Not. R. Astron. Soc. 296, 893 (1998).

    Article  ADS  Google Scholar 

  38. A. F. Lanza and M. Rodono, Astron. Astrophys. 349, 887 (1999).

    ADS  Google Scholar 

  39. R. A. Donahue, S. H. Saar, and S. L. Baliunas, Astrophys. J. 466, 384 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Zhurnal, Vol. 81, No. 5, 2004, pp. 459–474.

Original Russian Text Copyright © 2004 by Pipin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pipin, V.V. Variations in the solar luminosity, radius, and quadrupole moment as effects of a large-scale dynamo in the solar convection zone. Astron. Rep. 48, 418–432 (2004). https://doi.org/10.1134/1.1744942

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1744942

Keywords

Navigation