Skip to main content
Log in

Optical limiters and diffraction elements based on a COANP-fullerene system: Nonlinear optical properties and quantum-chemical simulation

  • Lasers and Their Applications
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The results of optical study and quantum-chemical simulation of a conjugated organic system, 2-cyclooctylamino-5-nitropyridine (COANP)-fullerene, performed to determine its potential for application as a limiter of visible and near-IR laser radiation and as a material for diffraction elements in systems for reversible recording of optical information, are presented. Complexation between a COANP molecule and fullerene is considered as one of the main mechanisms responsible for the corresponding properties of this system. For the first time, nonlinear optical characteristics of COANP-C60 and COANP-C70 systems are comparatively studied and the intermolecular interaction between a COANP molecule and fullerene is analyzed on the quantum-chemical level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kost, L. Tutt, and M. B. Klein, Opt. Lett. 18, 334 (1993).

    Article  ADS  Google Scholar 

  2. J.-C. Dubois, P. Robin, and V. Dentan, Proc. SPIE 2025, 467 (1993).

    Article  ADS  Google Scholar 

  3. K. Yoshino, X. H. Yin, S. Morita, and A. A. Zakhidov, Jpn. J. Appl. Phys., Part 2 32 (1A/B), L140 (1993).

    Article  Google Scholar 

  4. Y. Wang, N. Herron, and J. Casper, Mater. Sci. Eng. B 19, 61 (1993).

    Article  Google Scholar 

  5. M. Ouyang, K. Z. Wang, H. X. Zhang, and Z. Q. Xue, Appl. Phys. Lett. 68, 2441 (1996).

    Article  ADS  Google Scholar 

  6. A. Itaya, I. Sizzuki, Y. Tsuboi, and H. Miyassaka, J. Phys. Chem. 101, 5118 (1997).

    Google Scholar 

  7. Z. Lu, S. H. Goh, S. Y. Lee, et al., Polymer 40, 2863 (1999).

    Article  Google Scholar 

  8. L. W. Tutt and T. F. Boggess, Prog. Quantum Electron. 17 (4), 299 (1993).

    Article  ADS  Google Scholar 

  9. S. Couris, E. Koudoumas, A. A. Ruth, and S. Leach, J. Phys. B 8, 4537 (1995).

    Article  ADS  Google Scholar 

  10. V. P. Belousov, I. M. Belousova, V. P. Budtov, et al., Opt. Zh. 64 (12), 3 (1997) [J. Opt. Technol. 64, 1081 (1997)].

    Google Scholar 

  11. Y. Wang, J. Phys. Chem. 96, 764 (1992).

    Article  Google Scholar 

  12. F. Diederich, R. Ettl, Y. Rubim, et al., Science 252, 548 (1991).

    Article  ADS  Google Scholar 

  13. A. V. Bazhenov, A. V. Gorbunov, and K. G. Volkodav, Pis’ma Zh. Éksp. Teor. Fiz. 60, 326 (1994) [JETP Lett. 60, 331 (1994)].

    Google Scholar 

  14. A. V. Bazhenov, A. V. Gorbunov, M. Yu. Maksimuk, and T. N. Fursova, Zh. Éksp. Teor. Fiz. 112, 246 (1997) [JETP 85, 135 (1997)].

    Google Scholar 

  15. D. V. Konarev, Y. V. Zubavichus, Yu. L. Slovokhotov, et al., Synth. Met., No. 92, 1 (1998).

    Article  Google Scholar 

  16. K. Hosoda, R. Tada, M. Ishikawa, and K. Yoshino, Jpn. J. Appl. Phys., Part 2 36 (3B), L372 (1997).

    Article  Google Scholar 

  17. N. V. Kamanina, Synth. Met. 127 (1–3), 121 (2002).

    Article  Google Scholar 

  18. N. V. Kamanina, J. Opt. A: Pure Appl. Opt. 3, 321 (2001).

    Article  ADS  Google Scholar 

  19. K. Sutter, J. Hulliger, and P. Günter, Solid State Commun. 74, 867 (1990).

    Article  ADS  Google Scholar 

  20. N. Kamanina, A. Barrientos, A. Leyderman, et al., Mol. Mater. 13, 275 (2000).

    Google Scholar 

  21. N. V. Kamanina, V. S. Vikhnin, A. Leyderman, et al., Opt. Spektrosk. 89, 404 (2000) [Opt. Spectrosc. 89, 369 (2000)].

    Google Scholar 

  22. N. V. Kamanina, L. N. Kaporskii, V. N. Sizov, and D. I. Stasel’ko, Opt. Commun. 185, 363 (2000).

    Article  ADS  Google Scholar 

  23. I. C. Khoo, H. Li, and Y. Liang, Opt. Lett. 19, 1723 (1994).

    Article  ADS  Google Scholar 

  24. N. V. Kamanina, J. Opt. A: Pure Appl. Opt. 4, 571 (2002).

    Article  ADS  Google Scholar 

  25. L. P. Rakcheeva and N. V. Kamanina, Pis’ma Zh. Tekh. Fiz. 28 (11), 28 (2002) [Tech. Phys. Lett. 28, 457 (2002)].

    Google Scholar 

  26. New Physical Principles of Optical Processing of Information, Ed. by S. A. Akhmanov and M. A. Vorontsov (Nauka, Moscow, 1990).

  27. R. S. Ruoff, D. S. Tse, R. Malhotra, and D. C. Lorents, J. Phys. Chem. 97, 3379 (1993).

    Article  Google Scholar 

  28. Tomohiro Shibata, Tetsuyoshi Ishii, Hiroshi Nozawa, and Toshiaki Tamamura, Jpn. J. Appl. Phys. 36 (12B), 7642 (1997).

    Article  ADS  Google Scholar 

  29. A. Sassara, G. Zerza, M. Chergui, et al., J. Chem. Phys. 107, 8731 (1997).

    Article  ADS  Google Scholar 

  30. S. Kazaoui, N. Minami, Y. Tanabe, et al., Phys. Rev. B 58, 7689 (1998).

    Article  ADS  Google Scholar 

  31. R. S. Mulliken and W. B. Person, Molecular Complexes (Wiley, New York, 1969).

    Google Scholar 

  32. S. A. Akhmanov and S. Yu. Nikitin, Physical Optics (Mosk. Gos. Univ., Moscow, 1998).

    Google Scholar 

  33. E. F. Sheka, in Book of Abstracts of 6th Session of the V. A. Fock School on Quantum and Computational Chemistry, Velikiy Novgorod (2003), p. 149.

    Google Scholar 

  34. I. G. Kaplan, Theory of Intermolecular Interactions (Nauka, Moscow, 1982; Elsevier, New York, 1986), Part 1.

    Google Scholar 

  35. K. Morokuma, J. Chem. Phys. 55, 1236 (1971).

    Article  ADS  Google Scholar 

  36. J. C. Tully, in Modern Theoretical Chemistry, Ed. by W. H. Miller (Plenum, New York, 1976), pp. 217–268.

    Google Scholar 

  37. N. F. Stepanov, Quantum Mechanics and Quantum Chemistry (Mosk. Gos. Univ., Moscow, 2001).

    Google Scholar 

  38. D. V. Konarev and R. N. Lyubovskaya, Usp. Khim. 68, 23 (1999).

    Article  Google Scholar 

  39. D. V. Konarev, A. Yu. Kovalevsky, A. L. Litvinov, et al., J. Solid State Chem. 168, 474 (2002).

    Article  ADS  Google Scholar 

  40. Z. G. Soos and D. J. Klein, in Molecular Association, Ed. by R. Foster (Academic, London and New York, 1975), Vol. 1, p. 1.

    Google Scholar 

  41. B. Narymbetov, A. Omerzu, V. V. Kabanov, et al., Nature 407, 883 (2000).

    Article  ADS  Google Scholar 

  42. E. F. Sheka, in Book of Abstracts of 6th Session of the V. A. Fock School on Quantum and Computational Chemistry, Velikiy Novgorod (2003), p. 150.

    Google Scholar 

  43. M. J. S. Dewar, E. G. Zoebisch, E. F. Healey, and J. J. P. Stewart, J. Am. Chem. Soc. 107, 3902 (1985).

    Article  Google Scholar 

  44. V. A. Zayets, CLUSTER-Z1: Quantum-Chemical Software for Calculations in the s,p-Basis (Inst. of Surface Chemistry, Nat. Acad. Sci. Ukr., Kiev, 1990).

    Google Scholar 

  45. C. Brink, L. H. Andersen, P. Hvelplund, et al., Chem. Phys. Lett. 233, 52 (1995).

    Article  ADS  Google Scholar 

  46. F. Wudl, Acc. Chem. Res. 25, 157 (1992).

    Article  Google Scholar 

  47. W. A. Lathan and K. Morokuma, J. Am. Chem. Soc. 97, 3615 (1975).

    Article  Google Scholar 

  48. R. S. Mulliken, J. Chem. Phys. 23, 1833 (1955).

    Article  ADS  Google Scholar 

  49. É. A. Silin’sh, Electron States of Organic Molecular Crystals (Zinatne, Riga, 1978).

    Google Scholar 

  50. A. I. Kitaĭgorodskiĭ, Molecular Crystals (Nauka, Moscow, 1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Kamanina.

Additional information

__________

Translated from Optika i Spektroskopiya, Vol. 96, No. 4, 2004, pp. 659–673.

Original Russian Text Copyright © 2004 by Kamanina, Sheka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamanina, N.V., Sheka, E.F. Optical limiters and diffraction elements based on a COANP-fullerene system: Nonlinear optical properties and quantum-chemical simulation. Opt. Spectrosc. 96, 599–612 (2004). https://doi.org/10.1134/1.1719152

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1719152

Keywords

Navigation