Skip to main content
Log in

Application of pattern recognition in molecular spectroscopy: Automatic line search in high-resolution spectra

  • Molecular Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

An expert system has been developed for the initial analysis of a recorded spectrum, namely, for the line search and the determination of line positions and intensities. The expert system is based on pattern recognition algorithms. Object recognition learning allows the system to achieve the needed flexibility and automatically detect groups of overlapping lines, whose profiles should be fit together. Gauss, Lorentz, and Voigt profiles are used as model profiles to which spectral lines are fit. The expert system was applied to processing of the Fourier transform spectrum of the D2O molecule in the region 3200–4200 cm−1, and it detected 4670 lines in the spectrum, which consisted of 439000 dots. No one experimentally observed line exceeding the noise level was missed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Toth, L. R. Brown, and C. Plymate, J. Quant. Spectrosc. Radiat. Transf. 59, 529 (1998).

    Article  ADS  Google Scholar 

  2. M. A. Aĭzerman, É. I. Braverman, and L. I. Rozonoér, Potential Function Method in Problems of Machine Teaching (Nauka, Moscow, 1970).

    Google Scholar 

  3. L. L. Levin, Introduction to the Pattern Recognition Theory (Tomsk. Gos. Univ., Tomsk, 1982).

    Google Scholar 

  4. A. P. Shcherbakov, Opt. Atmos. Okeana 10, 947 (1997).

    Google Scholar 

  5. A. M. Pshenichnikov and A. P. Shcherbakov, Proc. SPIE 4143, 60 (2000).

    Google Scholar 

  6. A. D. Bykov, O. N. Naumenko, L. N. Sinitsa, et al., Opt. Spektrosk. 94, 580 (2003) [Opt. Spectrosc. 94, 528 (2003)].

    Article  Google Scholar 

  7. P. Jensen, The Giessen Program for Processing Spectral Data from BRUKER IFS 120 HR Interferometer Using an IBM Compatible Personal Computer (Justus Leigig Univ., Giessen, 1990).

    Google Scholar 

  8. M. Birk, D. Hausamann, G. Wagner, and J. W. Johns, Appl. Opt. 35, 2971 (1996).

    Article  ADS  Google Scholar 

  9. M. E. Élyashberg, L. A. Gribov, and V. V. Serov, Molecular Spectral Analysis and Computers (Nauka, Moscow, 1980).

    Google Scholar 

  10. M. Yu. Kataev and A. A. Mitsel’, Avtometriya, No. 4, 15 (1985).

    Google Scholar 

  11. M. Yu. Kataev, A. A. Mitsel’, and S. R. Tarasova, Opt. Atmos. 3, 832 (1990).

    Google Scholar 

  12. A. N. Tikhonov and V. Ya. Arsenin, Solutions of Ill-Posed Problems (Nauka, Moscow, 1974; Halsted, New York, 1977).

    Google Scholar 

  13. A. Bykov, O. Naumenko, L. Sinitsa, et al., J. Mol. Struct. 199, 158 (2000).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Optika i Spektroskopiya, Vol. 96, No. 4, 2004, pp. 552–558.

Original Russian Text Copyright © 2004 by Bykov, Pshenichnikov, Sinitsa, Shcherbakov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bykov, A.D., Pshenichnikov, A.M., Sinitsa, L.N. et al. Application of pattern recognition in molecular spectroscopy: Automatic line search in high-resolution spectra. Opt. Spectrosc. 96, 497–502 (2004). https://doi.org/10.1134/1.1719135

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1719135

Keywords

Navigation