Evaluating the attractor dimension of a nonlinear oscillator

Abstract

The correlation dimension of a chaotic attractor of a nonautonomous nonlinear oscillator with variable control parameters is evaluated from experimental data. The dimension of a critical attractor shows good agreement with theoretical data. As the amplitude of the external action is varied, the chaotic attractor exhibits evolution such that the correlation dimension increases from a minimum value, determined by the properties of the critical attractor, to the nearest integer.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    P. Grassberger and I. Procaccia, Phys. Rev. Lett. 50, 346 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  2. 2.

    G. Broggi, J. Opt. Soc. Am. B 5, 1020 (1988).

    ADS  Google Scholar 

  3. 3.

    P. S. Landa and M. G. Rozenblyum, Zh. Tekh. Fiz. 59(11), 1 (1989) [Sov. Phys. Tech. Phys. 34, 1229 (1989)].

    Google Scholar 

  4. 4.

    H. D. I. Abarbanel and M. B. Kennel, Phys. Rev. E 47, 3057 (1993).

    Article  ADS  Google Scholar 

  5. 5.

    M. Ding, C. Grebogi, E. Ott, et al., Phys. Rev. Lett. 70, 3872 (1993).

    ADS  Google Scholar 

  6. 6.

    A. A. Kipchatov, Pis’ma Zh. Tekh. Fiz. 21(15), 90 (1995) [Tech. Phys. Lett. 21, 627 (1995)].

    Google Scholar 

  7. 7.

    B. R. Hunt, E. Ott, and J. A. Yorke, Phys. Rev. E 54, 4819 (1996).

    ADS  Google Scholar 

  8. 8.

    R. Hegger, H. Kantz, and E. Olbrich, Phys. Rev. E 56, 199 (1997).

    Article  ADS  Google Scholar 

  9. 9.

    S. A. Rakitin and E. P. Seleznev, in Proceedings of the 5th International Workshop on Nonlinear Dynamics of Electronics Systems (NDES’97), Moscow, 1997, pp. 376–380.

  10. 10.

    P. S. Linsay, Phys. Rev. Lett. 47, 1349 (1981).

    Article  ADS  Google Scholar 

  11. 11.

    R. Buskirk and C. Jeffries, Phys. Rev. A 31, 3332 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  12. 12.

    V. V. Astakhov, B. P. Bezruchko, and E. P. Seleznev, Radiotekh. Élektron. (Moscow) 32, 2556 (1987).

    ADS  Google Scholar 

  13. 13.

    A. A. Kipchatov, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 33, 182 (1990).

    ADS  MathSciNet  Google Scholar 

  14. 14.

    J. H. Baxter, M. F. Bocko, and D. H. Douglass, Phys. Rev. A 41, 619 (1990).

    Article  ADS  Google Scholar 

  15. 15.

    B. P. Bezruchko, A. Yu. Zhalnin, M. D. Prokhorov, and E. P. Seleznev, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelineinaya Din. 5(2–3), 48 (1997).

    Google Scholar 

  16. 16.

    T. S. Halsey, M. H. Jensen, L. P. Kadanoff, et al., Phys. Rev. A 33, 1141 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  17. 17.

    A. P. Kuznetsov and S. P. Kuznetsov, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelineinaya Din. 1(1–2), 15 (1993).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

__________

Translated from Pis’ma v Zhurnal Tekhnichesko\({{P_{As_4 } } \mathord{\left/ {\vphantom {{P_{As_4 } } {P_{Ga} }}} \right. \kern-\nulldelimiterspace} {P_{Ga} }} = \gamma \) Fiziki, Vol. 30, No. 5, 2004, pp. 76–81.

Original Russian Text Copyright © 2004 by Seleznev, Zakharevich.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Seleznev, E.P., Zakharevich, A.M. Evaluating the attractor dimension of a nonlinear oscillator. Tech. Phys. Lett. 30, 208–210 (2004). https://doi.org/10.1134/1.1707169

Download citation

Keywords

  • Experimental Data
  • Attractor Dimension
  • Variable Control
  • Control Parameter
  • Nonlinear Oscillator