Skip to main content
Log in

The structure of Galactic gas at high latitudes: The southern polar cap

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We analyze the angular structure of the 21-cm interstellar neutral hydrogen emission at six and seven declinations in the northern (published previously) and southern polar caps of the Galaxy (Galactic latitudes from −40° to −90°), respectively, with an extent of 90° in right ascension. The RATAN-600 radio telescope has a beam width averaged over these regions of 2.′0×30′. One-dimensional power spectra for the angular distribution of interstellar neutral hydrogen emission were computed in each 6.3-km s−1-wide spectral channel by using the standard Fast Fourier Transform (FFT) code and were smoothed over 1h in right ascension. The Galactic latitude dependence of the mean parameters for the sky distribution of H I line emission at high latitudes was found to correspond to the distribution of gas in the form of a flat layer only in the northern region, while in the southern cap, the gas distribution is much less regular. In addition, the mean H I radial velocities are negative everywhere (−3.7±3.0 km s−1 in the north and −6.0±2.4 km s−1 in the south). The power spectra of the angular fluctuations in the range of angular periods from 10′ to 6° appear as power laws. However, the spectral indices change greatly over the sky: from −3 to −1.2; on average, as the Galactic latitude increases and the H I column density decreases, the fluctuation spectrum of the interstellar gas emission becomes flatter. In the northern polar region, this behavior is much more pronounced, which probably stems from the fact that the gas column density in the south is generally a factor of 2 or 3 higher than that in the north. Therefore, the spectra are, on average, also steeper in the south, but the dependence on Galactic latitude is weaker. Using simulations, we show that the observed power-law spectrum of the H I emission distribution can be obtained in terms of not only a turbulent, but also a cloud model of interstellar gas if we use our previous spectra of the diameters and masses of H I clouds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. A. Alferova, I. V. Gosachinskii, S. R. Zhelenkov, and A. S. Morozov, Izv. SAO RAN 23, 89 (1986).

    Google Scholar 

  2. J. Ballesteros-Paredes, E. Vasquez-Semadeni, and J. Scalo, Astrophys. J. 515, 286 (1999).

    Article  ADS  Google Scholar 

  3. J. Crovisier and J. M. Dickey, Astron. Astrophys. 122, 282 (1983).

    ADS  Google Scholar 

  4. J. M. Dickey, N. M. McClure-Griffiths, S. Stanimirivic, et al., Astrophys. J. 561, 264 (2001).

    Article  ADS  Google Scholar 

  5. I. Fejes and P. R. Wesselius, Astron. Astrophys. 24, 1 (1973).

    ADS  Google Scholar 

  6. I. Goldman, Astrophys. J. 541, 701 (2000).

    Article  ADS  Google Scholar 

  7. I. V. Gosachinskii and V. V. Morozova, Astron. Astrophys. Trans. 11, 215 (1996).

    Google Scholar 

  8. I. V. Gosachinskii and V. V. Morozova, Astron. Zh. 76, 883 (1999) [Astron. Rep. 43, 777 (1999)].

    Google Scholar 

  9. I. V. Gosachinskii, G. N. Il'in, A. S. Morozov, and V. A. Prozorov, Pis'ma Astron. Zh. 25, 820 (1999) [Astron. Lett. 25, 712 (1999)].

    Google Scholar 

  10. D. A. Green, Mon. Not. R. Astron. Soc. 262, 327 (1993).

    ADS  Google Scholar 

  11. D. Hartmann, P. M. W. Kalberla, W. B. Burton, and U. Mebold, Astron. Astrophys., Suppl. Ser. 119, 115 (1996).

    Article  ADS  Google Scholar 

  12. C. Heiles, S. Kulkarni, and A. A. Stark, Astrophys. J. Lett. 247, L73 (1981).

    ADS  Google Scholar 

  13. G. N. Il'in, V. A. Prozorov, and A. M. Pilipenko, in Proceedings of the XX VII Radioastronomy Conference: Problems of Modern Radioastronomy (IPA RAN, St. Petersburg, 1997), p. 128.

    Google Scholar 

  14. S. A. Kaplan and S. B. Pikelner, Physics of the Interstellar Medium (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  15. A. Lazarian, Astron. Astrophys. 293, 507 (1995).

    ADS  Google Scholar 

  16. A. Lazarian and D. Pogosyan, Astrophys. J. 537, 720 (2000).

    Article  ADS  Google Scholar 

  17. R. X. McGee and L. M. Newton, Publ. Astron. Soc. Australia 6, 358 (1986).

    ADS  Google Scholar 

  18. A. P. Venger, I. V. Gosachinskii, V. G. Grachev, and N. F. Ryzhkov, Izv. SAO RAN 14, 118 (1981).

    Google Scholar 

  19. A. P. Venger, V. G. Grachev, T. M. Egorova, et al., Soobshch. SAO RAN, No. 35, 5 (1982).

    Google Scholar 

  20. A. P. Venger, I. V. Gosachinskii, N. A. Esepkina, et al., in Proceedings of the XXVII Radioastronomy Conference: Problems of Modern Radioastronomy (IPA RAN, St. Petersburg, 1997), p. 130.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis'ma v Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Zhurnal, Vol. 30, No. 4, 2004, pp. 268–276.

Original Russian Text Copyright © 2004 by Gosachinskii, Il'in, Prozorov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gosachinskii, I.V., Il'in, G.N. & Prozorov, V.A. The structure of Galactic gas at high latitudes: The southern polar cap. Astron. Lett. 30, 232–239 (2004). https://doi.org/10.1134/1.1695083

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1695083

Key words

Navigation