Skip to main content
Log in

The mechanism of ionic conductivity in stabilized cubic zirconia

  • Semiconductors and Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The electron-density functional method (in the gradient approximation) and the pseudopotential method are used to study the mechanism of ionic conductivity in the cubic phase of zirconia stabilized with magnesium or yttrium. The oxygen-ion migration in the stabilized zirconia is shown to be a two-stage process, which consists in the formation of active oxygen vacancies and in oxygen-ion jumps from one active vacancy to another. The total activation energy of these processes is calculated to be 1.0–1.5 eV, which agrees with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Aldebert and J. P. Traverse, J. Am. Ceram. Soc. 68, 34 (1985).

    Google Scholar 

  2. R. J. Ackermann, S. P. Garg, and E. G. Rauth, J. Am. Ceram. Soc. 60, 341 (1977).

    Google Scholar 

  3. R. H. French, S. J. Glass, F. S. Ohuchi, et al., Phys. Rev. B 49, 5133 (1994).

    Article  ADS  Google Scholar 

  4. T. H. Etsel and S. N. Flengas, Chem. Rev. 70, 339 (1970).

    Google Scholar 

  5. Y. Suzuki, T. Takahashi, and N. Nagae, Solid State Ionics 3–4, 483 (1981).

    Google Scholar 

  6. P. Aberland and J. F. Baumard, Phys. Rev. B 26, 1005 (1982).

    ADS  Google Scholar 

  7. J. Bauerle and J. Hrizo, J. Phys. Chem. Solids 30, 565 (1969).

    ADS  Google Scholar 

  8. J. D. Solier, I. Cachadiña, and A. Dominquez-Rodriguez, Phys. Rev. B 48, 3704 (1993).

    Article  ADS  Google Scholar 

  9. I. Cachadiña, J. D. Solier, and A. Dominquez-Rodriguez, Phys. Rev. B 52, 10872 (1995).

    Google Scholar 

  10. C. León, M. L. Licia, and J. Santamaria, Phys. Rev. B 55, 882 (1997).

    ADS  Google Scholar 

  11. A. Bogicevic, C. Wolverton, G. M. Crosbie, and E. B. Stechel, Phys. Rev. B 64, 014106 (2001).

    Google Scholar 

  12. V. M. Zainullina and V. P. Zhukov, Fiz. Tverd. Tela (St. Petersburg) 43(9), 1619 (2001) [Phys. Solid State 43, 1686 (2001)].

    Google Scholar 

  13. M. Bockstedte, A. Kley, J. Neugebauer, and M. Scheffler, Comput. Phys. Commun. 107, 187 (1997).

    ADS  MATH  Google Scholar 

  14. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  15. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  16. J. P. Perdew and Y. Wang, Phys. Rev. B 33, 8800 (1986).

    ADS  Google Scholar 

  17. N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).

    ADS  Google Scholar 

  18. M. Fuchs and M. Scheffler, Comput. Phys. Commun. 119, 67 (1999).

    ADS  MATH  Google Scholar 

  19. F. D. Murnagham, Proc. Natl. Acad. Sci. USA 30, 244 (1944).

    ADS  Google Scholar 

  20. C. J. Howard, R. J. Hill, and B. E. Reichert, Acta Crystallogr. B 44, 116 (1988).

    Article  Google Scholar 

  21. K. J. Chang and M. L. Cohen, Phys. Rev. B 30, 4774 (1984).

    ADS  Google Scholar 

  22. J. Haines, J. M. Leger, S. Hull, et al., J. Am. Ceram. Soc. 80, 1910 (1997).

    Google Scholar 

  23. O. L. Anderson and P. Andreatch, J. Am. Ceram. Soc. 49, 404 (1966).

    Google Scholar 

  24. C. Proust, Y. Vaills, Y. Luspin, and E. Husson, Solid State Commun. 93, 729 (1995).

    Article  ADS  Google Scholar 

  25. W. R. Manning, O. Hunter, Jr., and B. R. Powell, Jr., J. Am. Ceram. Soc. 52, 436 (1969).

    Google Scholar 

  26. V. V. Kharton, E. N. Namovich, and A. A. Vecher, J. Solid Electrochem. 3, 61 (1999).

    Google Scholar 

  27. S. E. Kul’kova and O. N. Muryzhnikova, Physica B (Amsterdam) 192, 284 (1993).

    ADS  Google Scholar 

  28. H. Jansen, Phys. Rev. B 43, 7267 (1991).

    ADS  Google Scholar 

  29. F. Zandiehnadem, R. A. Murray, and W. Y. Ching, Physica B (Amsterdam) 150, 19 (1988).

    Article  Google Scholar 

  30. L. Soriano, M. Abbate, J. Faber, et al., Solid State Commun. 93, 659 (1995).

    Article  ADS  Google Scholar 

  31. G. Stapper, B. Bernasconi, N. Nicoloso, and M. Parinello, Phys. Rev. B 59, 797 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 46, No. 3, 2004, pp. 441–445.

Original Russian Text Copyright © 2004 by Zavodinsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zavodinsky, V.G. The mechanism of ionic conductivity in stabilized cubic zirconia. Phys. Solid State 46, 453–457 (2004). https://doi.org/10.1134/1.1687859

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1687859

Keywords

Navigation