Skip to main content
Log in

Melting of metallic hydrogen at high pressures

  • Condensed Matter
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

The Lindemann equation was used to calculate the melting of metallic hydrogen. It is shown that, after transition from the molecular dielectric phase to the atomic metallic phase, hydrogen becomes a quantum liquid because of the atomic zero-point vibrations. The phase diagram of hydrogen is unique in that the molecular phase is the only solid phase of hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. G. Maksimov and Yu. I. Shilov, Usp. Fiz. Nauk 169, 1223 (1999) [Phys. Usp. 42, 1121 (1999)].

    Google Scholar 

  2. E. G. Brovman, Yu. Kagan, and A. Holas, Zh. Éksp. Teor. Fiz. 62, 1492 (1972) [Sov. Phys. JETP 35, 783 (1972)].

    Google Scholar 

  3. K. Ebina and H. Miyagi, Phys. Lett. A 142, 237 (1989).

    Article  ADS  Google Scholar 

  4. T. W. Barbee and M. L. Cohen, Phys. Rev. B 44, 11563 (1991).

    Google Scholar 

  5. K. Johnson and N. W. Ashcroft, J. Phys.: Condens. Matter 10, 11135 (1998).

    Google Scholar 

  6. D. M. Straus and N. W. Ashcroft, Phys. Rev. Lett. 38, 415 (1977).

    Article  ADS  Google Scholar 

  7. D. M. Ceperley and B. J. Alder, Phys. Rev. B 36, 2092 (1987).

    Article  ADS  Google Scholar 

  8. B. I. Min, H. J. F. Jansen, and A. J. Freeman, Phys. Rev. B 30, 5076 (1984).

    Article  ADS  Google Scholar 

  9. V. Natoli, R. M. Martin, and D. M. Ceperley, Phys. Rev. Lett. 70, 1952 (1993).

    Article  ADS  Google Scholar 

  10. A. H. MacDonald and C. P. Burgess, Phys. Rev. B 26, 2849 (1982).

    ADS  Google Scholar 

  11. N. W. Ashcroft, J. Phys.: Condens. Matter 12, A129 (2000).

    Article  ADS  Google Scholar 

  12. L. G. Caron, J. Chem. Phys. 55, 5227 (1971).

    Article  Google Scholar 

  13. L. G. Caron, Phys. Rev. B 9, 5025 (1974).

    ADS  Google Scholar 

  14. H. M. van Horn, Astrophys. J. 151, 227 (1968).

    ADS  Google Scholar 

  15. S. G. Brush, H. L. Sahlin, and E. Teller, J. Chem. Phys. 45, 2102 (1966).

    Article  Google Scholar 

  16. D. J. Stevenson and N. W. Ashcroft, Phys. Rev. A 9, 782 (1974).

    Article  ADS  Google Scholar 

  17. K. Inoue and T. Ariyasu, J. Phys. Soc. Jpn. 48, 2179 (1980).

    ADS  Google Scholar 

  18. Yu. Kagan, V. V. Pushkarev, and A. Holas, Zh. Éksp. Teor. Fiz. 73, 967 (1977) [Sov. Phys. JETP 46, 511 (1977)].

    ADS  Google Scholar 

  19. F. Datchi, P. Loubeyre, and R. LeToullec, Phys. Rev. B 61, 6535 (2000).

    Article  ADS  Google Scholar 

  20. V. V. Kechin, J. Phys.: Condens. Matter 7, 531 (1995); Phys. Rev. B 65, 052102 (2002).

    Article  ADS  Google Scholar 

  21. S. T. Weir, J. Phys.: Condens. Matter 10, 11147 (1998).

    Google Scholar 

  22. A. Alavi, M. Parinello, and D. Frenkel, Science 269, 1252 (1995).

    ADS  Google Scholar 

  23. O. Pfaffenzeller and D. Hohl, J. Phys.: Condens. Matter 9, 11023 (1997).

    Google Scholar 

  24. F. A. Lindemann, Phys. Z. 11, 609 (1910).

    MATH  Google Scholar 

  25. V. P. Trubitsyn, Fiz. Tverd. Tela (Leningrad) 8, 862 (1966) [Sov. Phys. Solid State 8, 688 (1966)].

    Google Scholar 

  26. A. A. Abrikosov, Zh. Éksp. Teor. Fiz. 39, 1797 (1960) [Sov. Phys. JETP 12, 1254 (1960)].

    Google Scholar 

  27. K. Ishizaki, I. L. Spain, and P. Bolsaitis, J. Chem. Phys. 63, 1401 (1975).

    Article  ADS  Google Scholar 

  28. S.-A. Cho, J. Phys. F: Met. Phys. 12, 1069 (1982).

    Article  ADS  Google Scholar 

  29. N. W. Ashcroft, in Proceedings of the 19th AIRAPT-41st EHPRG International Conference on High Pressure Science and Technology (Bridgman Award) (Bordeaux, France, 2003).

    Google Scholar 

  30. J. Oliva and N. W. Ashcroft, Phys. Rev. B 25, 223 (1982).

    Article  ADS  Google Scholar 

  31. J. E. Jaffe and N. W. Ashcroft, Phys. Rev. B 23, 6176 (1981).

    Article  ADS  Google Scholar 

  32. V. Diatschenko, C. W. Chu, D. H. Liebenberg, et al., Phys. Rev. B 32, 381 (1985).

    Article  ADS  Google Scholar 

  33. E. Gregoryanz, A. F. Goncharov, K. Matsuishi, et al., Phys. Rev. Lett. 90, 175701 (2003).

    Google Scholar 

  34. S. Scandolo, Proc. Natl. Acad. Sci. USA 100, 3051 (2003).

    Article  ADS  Google Scholar 

  35. D. Hohl, V. Nataly, D. M. Ceperley, and R. M. Martin, Phys. Rev. Lett. 71, 541 (1993).

    Article  ADS  Google Scholar 

  36. C. Narayana, H. Luo, J. Orloff, and A. L. Ruoff, Nature 393, 46 (1998).

    Google Scholar 

  37. P. Loubeyre, F. Occelli, and R. LeToullec, Nature 416, 613 (2002).

    Article  ADS  Google Scholar 

  38. I. I. Mazin, R. J. Hemley, A. F. Goncharov, et al., Phys. Rev. Lett. 78, 1066 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 79, No. 1, 2004, pp. 46–49.

Original Russian Text Copyright © 2004 by Kechin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kechin, V.V. Melting of metallic hydrogen at high pressures. Jetp Lett. 79, 40–43 (2004). https://doi.org/10.1134/1.1675919

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1675919

PACS numbers

Navigation