Skip to main content
Log in

Thermal cyclotron radiation by isolated magnetic white dwarfs and constraints on the parameters of their coronas

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

An efficient method for the detection and estimation of the parameters of the coronas of isolated white dwarfs possessing magnetic fields of about 107 G is tested. This method is based on the detection of thermal radiation of the coronal plasma at harmonics of the electron gyrofrequency, which is manifest as a polarized infrared excess. The Stokes parameters for the thermal cyclotron radiation from the hot corona of a white dwarf with a dipolar magnetic field are calculated. A new upper limit for the electron density, 1010 cm−3, in a corona with a temperature of ≳106 K is found for the white dwarf G99-47 (WD 0553+053). This limit is a factor of 40 lower than the value derived earlier from ROSAT X-ray observations. Recommendations for subsequent infrared observations of isolated magnetic white dwarfs aimed at detecting their coronas or deriving better constraints on their parameters are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. A. Fleming, K. Werner, and M. A. Barstow, Astrophys. J. 416, L79 (1993).

    Article  ADS  Google Scholar 

  2. I. J. O’Dwyer, Y.-H. Chu, R. A. Gruendl, et al., Astron. J. 125, 2239 (2003).

    ADS  Google Scholar 

  3. E. M. Sion and R. A. Downes, Astrophys. J. 396, L79 (1992).

    Article  ADS  Google Scholar 

  4. T. A. Fleming, S. L. Snowden, E. Pfeffermann, et al., Astron. Astrophys. 316, 147 (1996).

    ADS  Google Scholar 

  5. H. L. Shipman, Astrophys. J. 206, L67 (1976).

    Article  ADS  Google Scholar 

  6. C. Martin, G. Basri, M. Lampton, and S. M. Kahn, Astrophys. J. 261, L81 (1982).

    Article  ADS  Google Scholar 

  7. Z. E. Musielak, Astrophys. J. 322, 234 (1987).

    Article  ADS  Google Scholar 

  8. Z. E. Musielak and J. M. Fontenla, Astrophys. J. 346, 435 (1989).

    Article  ADS  Google Scholar 

  9. K. A. Arnaud, V. V. Zheleznyakov, and V. Trimble, Publ. Astron. Soc. Pac. 104, 239 (1992).

    Article  ADS  Google Scholar 

  10. R. Cavallo, K. A. Arnaud, and V. Trimble, J. Astrophys. Astron. 14, 141 (1993).

    ADS  Google Scholar 

  11. D. T. Wickramasinghe and L. Ferrario, Publ. Astron. Soc. Pac. 112, 873 (2000).

    Article  ADS  Google Scholar 

  12. V. V. Zheleznyakov, Astrophys. Space Sci. 97, 229 (1983).

    Article  MATH  ADS  Google Scholar 

  13. V. V. Zheleznyakov and A. A. Litvinchuk, Astrophys. Space Sci. 105, 73 (1984).

    Article  ADS  Google Scholar 

  14. V. V. Zheleznyakov and A. V. Serber, Adv. Space Res. 16, 77 (1995).

    ADS  Google Scholar 

  15. V. N. Sazonov and V. V. Chernomordik, Astrophys. Space Sci. 32, 355 (1975).

    Article  ADS  Google Scholar 

  16. W. H. Ingham, K. Brecher, and I. Wasserman, Astrophys. J. 207, 518 (1976).

    Article  ADS  Google Scholar 

  17. J. C. Kemp, Astrophys. J. 162, 169 (1970).

    Article  ADS  Google Scholar 

  18. J. C. Kemp, Astrophys. J. 213, 794 (1977).

    Article  ADS  Google Scholar 

  19. A. V. Serber, Astron. Zh. 67, 582 (1990) [Sov. Astron. 34, 291 (1990)].

    ADS  Google Scholar 

  20. A. V. Serber, Izv. Vyssh. Uchebn. Zaved., Ser. Radiofiz. 42, 1035 (1999) [Radiophys. Quant. Electron. 42, 911 (1999)].

    Google Scholar 

  21. C. Krishna Kumar, Publ. Astron. Soc. Pac. 97, 294 (1985).

    Article  ADS  Google Scholar 

  22. P. Bergeron, S. K. Leggett, and M. Ruiz, Astrophys. J., Suppl. Ser. 133, 413 (2001).

    Article  ADS  Google Scholar 

  23. F. Wesemael, J. L. Greenstein, J. Liebert, et al., Publ. Astron. Soc. Pac. 105, 761 (1993).

    Article  ADS  Google Scholar 

  24. P. Bergeron, M. T. Ruiz, and S. K. Leggett, Astrophys J., Suppl. Ser. 108, 339 (1997).

    Article  ADS  Google Scholar 

  25. S. K. Leggett, M. T. Ruiz, and P. Bergeron, Astrophys. J. 497, 294 (1998).

    Article  ADS  Google Scholar 

  26. G. P. McCook and E. M. Sion, Astrophys. J., Suppl. Ser. 121, 1 (1999).

    Article  ADS  Google Scholar 

  27. V. A. Hughes, P. A. Feldman, and A. Woodsworth, Astrophys. J. 170, L125 (1971).

    Article  ADS  Google Scholar 

  28. A. Putney and S. Jordan, Astrophys. J. 449, 863 (1995).

    Article  ADS  Google Scholar 

  29. D. T. Wickramasinghe and B. Martin, Mon. Not. R. Astron. Soc. 188, 165 (1979).

    ADS  Google Scholar 

  30. V. V. Zheleznyakov, Itogi Nauki Tekhn., Ser. Astron. 22, 135 (1983) [Sov. Sci. Rev. Astrophys. Space Phys. Rev. 3, 157 (1984)].

    Google Scholar 

  31. V. V. Zheleznyakov, Radiation in Astrophysical Plasmas (Kluwer, Dordrecht, 1996; Yanus-K, Moscow, 1997).

    Google Scholar 

  32. Standard Definitions of Terms for Radio Wave Propagation, IEEE Trans. Antennas Propag. 17, 270 (1969).

    Google Scholar 

  33. J. P. Hamaker and J. D. Bregman, Astron. Astrophys., Suppl. Ser. 117, 161 (1996).

    ADS  Google Scholar 

  34. V. V. Zheleznyakov, S. A. Koryagin, and A. V. Serber, Pis’ma Astron. Zh. 25, 522 (1999) [Astron. Lett. 25, 445 (1999)].

    Google Scholar 

  35. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Ed. by M. Abramowitz and I. A. Stegun (Dover, New York, 1965, 1971; Nauka, Moscow, 1979).

    Google Scholar 

  36. V. V. Zheleznyakov, S. A. Koryagin, and A. V. Serber, Pis’ma Astron. Zh. 25, 513 (1999) [Astron. Lett. 25, 437 (1999)].

    Google Scholar 

  37. S. A. Koryagin, Zh. Éksp. Teor. Fiz. 117, 853 (2000) [JETP 90, 741 (2000)].

    Google Scholar 

  38. V. V. Zheleznyakov, Astro fizika 16, 539 (1980) [Astrophysics 16, 316 (1981)].

    ADS  Google Scholar 

  39. D. Michalas, Stellar Atmospheres (Freeman, San Francisco, 1978; Mir, Moscow, 1982).

    Google Scholar 

  40. D. Mihalas, J. Comp. Phys. 57, 1 (1985).

    MATH  MathSciNet  ADS  Google Scholar 

  41. G. Forsythe, M. Malcolm, and C. Moler, Computer Methods for Mathematical Computations (Prentice-Hall, Englewood Cliffs, 1977; Mir, Moscow, 1980).

    Google Scholar 

  42. Yu. N. Gnedin and G. G. Pavlov, Zh. Éksp. Teor. Fiz. 65, 1806 (1973).

    ADS  Google Scholar 

  43. A. I. Akhiezer, I. A. Akhiezer, R. V. Polovin, et al., Plasma Electrodynamics (Nauka, Moscow, 1974; Pergamon, Oxford, 1975).

    Google Scholar 

  44. V. V. Zheleznyakov and A. V. Serber, Astron. Zh. 70, 1002 (1993) [Astron. Rep. 37, 507 (1993)].

    ADS  Google Scholar 

  45. M. S. Bessell and J. M. Brett, Publ. Astron. Soc. Pac. 100, 1134 (1988).

    Article  ADS  Google Scholar 

  46. D. Y. Gezari, P. S. Pitts, and M. Schmitz, Catalog of Infrared Observations (Centre de Données Astronomiques de Strasbourg, 1999); http://cdsweb.ustrasbg.fr/viz-bin/VizieR?-source=II/225.

  47. J. Mould and J. Liebert, Astrophys. J. 226, L29 (1978).

    Article  ADS  Google Scholar 

  48. D. T. Wickramasinghe, D. A. Allen, and M. S. Bessell, Mon. Not. R. Astron. Soc. 198, 473 (1982).

    ADS  Google Scholar 

  49. R. G. Probst, Astrophys. J., Suppl. Ser. 53, 335 (1983).

    Article  ADS  Google Scholar 

  50. S. K. Leggett, Astron. Astrophys. 208, 141 (1989).

    ADS  Google Scholar 

  51. S. C. West, Astrophys. J. 345, 511 (1989).

    Article  ADS  Google Scholar 

  52. C. Krishna Kumar, Astron. J. 94, 158 (1987).

    Article  ADS  Google Scholar 

  53. J. L. Greenstein and J. K. McCarthy, Astrophys. J. 289, 732 (1985).

    Article  ADS  Google Scholar 

  54. L. Ferrario, D. T. Wickramasinghe, J. Liebert, et al., Mon. Not. R. Astron. Soc. 289, 105 (1997).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Zhurnal, Vol. 81, No. 2, 2004, pp. 143–158.

Original Russian Text Copyright © 2004 by Zheleznyakov, Koryagin, Serber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheleznyakov, V.V., Koryagin, S.A. & Serber, A.V. Thermal cyclotron radiation by isolated magnetic white dwarfs and constraints on the parameters of their coronas. Astron. Rep. 48, 121–135 (2004). https://doi.org/10.1134/1.1648076

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1648076

Keywords

Navigation