Skip to main content
Log in

Seyfert nuclei as sources of ultrahigh-energy cosmic rays

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Particles can be accelerated to ultrahigh energies E≈1021 eV in moderate Seyfert nuclei. This acceleration occurs in shock fronts in relativistic jets. The maximum energy and chemical composition of the accelerated particles depend on the magnetic field in the jet, which is not well known; fields in the range ∼5–1000 G are considered in the model. The highest energies of E≈1021 eV are acquired by Fe nuclei when the field in the jet is B≈16 G. When B∼(5–40) G, nuclei with Z<10 are accelerated to E≤1020 eV, while nuclei with Z≥10 acquire energies E≥2×1020 eV. Only particles with Z≥23 acquire energies E≤1020 eV when B∼1000 G. Protons are accelerated to E<4×1019 eV, and do not fall into the range of energies of interest for any magnetic field B. The particles lose a negligible amount of their energy in interactions with infrared photons in the accretion disk; losses in the thick gas-dust torus are also negligible if the luminosity of the galaxy is L≤1046 erg/s and the angle between the normal to the galactic plane and the line of sight is sufficiently small, i.e., if the axial ratio of the galactic disk is comparatively high. The particles do not lose energy to curvature radiation if their deviations from the jet axis do not exceed 0.03–0.04 pc at distances from the center of R≈40–50 pc. Synchrotron losses are small, since the magnetic field frozen in the galactic wind at R≤40–50 pc is directed (as in the jet) primarily in the direction of motion. If the model considered is valid, the detected cosmic-ray protons could be either fragments of Seyfert nuclei or be accelerated in other sources. The jet magnetic fields can be estimated both from direct astronomical observations and from the energy spectrum and chemical composition of cosmic rays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Berezinskii, S. V. Bulanov, V. L. Ginzburg, et al., in Astrophysics of Cosmic Rays, Ed. by V. L. Ginzburg (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  2. A. V. Uryson, Pis’ma Zh. Éksp. Teor. Fiz. 64, 71 (1996) [JETP Lett. 64, 77 (1996)].

    Google Scholar 

  3. A. V. Uryson, Zh. Éksp. Teor. Fiz. 116, 1121 (1999) [JETP 89, 597 (1999)].

    Google Scholar 

  4. A. V. Uryson, Astron. Astrophys. Trans. 20, 347 (2001).

    Google Scholar 

  5. A. V. Uryson, Astron. Zh. 78, 686 (2001) [Astron. Rep. 45, 591 (2001)].

    Google Scholar 

  6. A. V. Uryson, Astron. Astrophys. Trans. 22(6) (2003); astro-ph/0310520 (2003).

  7. K. Greisen, Phys. Rev. Lett. 16, 748 (1966).

    Article  ADS  Google Scholar 

  8. G. C. Zatsipin and V. A. Kuz’min, Pis’ma Zh. Éksp. Teor. Fiz. 4, 114 (1966).

    Google Scholar 

  9. F. W. Stecker, Phys. Rev. Lett. 21, 1016 (1968).

    Article  ADS  Google Scholar 

  10. G. L. Squires, Practical Physics (McGraw-Hill, New York, 1968; Mir, Moscow, 1971).

    Google Scholar 

  11. M. Takeda, N. Hayashida, K. Honda, et al., Astrophys. J. 522, 225 (1999).

    Article  ADS  Google Scholar 

  12. D. Bird, S. C. Corbato, H. Y. Dai, et al., Astrophys. J. 441, 144 (1995).

    Article  ADS  Google Scholar 

  13. A. Watson, in Particle and Nuclear Astrophysics and Cosmology in the Next Millenium, Ed. by E. W. Kolb and R. D. Peccei (World Sci., Singapore, 1995), p. 126.

    Google Scholar 

  14. B. N. Afanasiev, M. N. Dyakonov, V. P. Egorova, et al., in Extremely High Energy Cosmic Rays: Astrophysics and Future Observatories, Ed. by M. Nagano (Inst. Cosmic-Ray Research, Tokyo, 1996), p. 32.

    Google Scholar 

  15. G. R. Farrar and P. L. Biermann, Phys. Rev. Lett. 81, 3579 (1998).

    Article  ADS  Google Scholar 

  16. S. B. Popov, http://xray.sai.msu.su/~polar/ (2001).

  17. H. Spinrad, S. Djorgovski, J. Marr, et al., Publ. Astron. Soc. Pac. 97, 932 (1985).

    Article  ADS  Google Scholar 

  18. H. Kuhr, A. Witzel, and I. I. K. Pauliny-Toth, Astron. Astrophys., Suppl. Ser. 45, 367 (1981).

    ADS  Google Scholar 

  19. M. P. Veron-Cetty and P. Veron, Astron. Astrophys. 374, 92 (2001); http://dbsrv.gsfc.nasa.gov/heasarc_veron98.

    ADS  Google Scholar 

  20. C. A. Haswell, T. Tajima, and J.-I. Sakai, Astrophys. J. 401, 495 (1992).

    Article  ADS  Google Scholar 

  21. N. S. Kardashev, Mon. Not. R. Astron. Soc. 276, 515 (1995).

    ADS  Google Scholar 

  22. R. Z. Sagdeev and V. U. Shapiro, Pis’ma Zh. Éksp. Teor. Fiz. 17, 389 (1973) [JETP Lett. 17, 279 (1973)].

    Google Scholar 

  23. T. Katsouleas and J. M. Dawson, Phys. Rev. Lett. 51, 392 (1983).

    ADS  Google Scholar 

  24. G. B. Field and R. D. Rogers, Astrophys. J. 403, 94 (1993).

    Article  ADS  Google Scholar 

  25. J. H. Krolik, Astrophys. J. 515, L73 (1999).

    Article  ADS  Google Scholar 

  26. R. Antonucci, Ann. Rev. Astron. Astrophys. 31, 473 (1993).

    ADS  Google Scholar 

  27. W. Bednarek, Astrophys. J. 402, L29 (1993).

    Article  ADS  Google Scholar 

  28. M. C. Begelman, R. D. Blandford, and M. J. Rees, Rev. Mod. Phys. 56, 255 (1984).

    Article  ADS  Google Scholar 

  29. K. Mannheim and P. L. Biermann, Astron. Astrophys. 253, L21 (1992).

    ADS  Google Scholar 

  30. M. Sikora, M. C. Begelman, and M. J. Rees, Astrophys. J. 421, 153 (1994).

    Article  ADS  Google Scholar 

  31. W. Bednarek and J. G. Kirk, Astron. Astrophys. 294, 366 (1995).

    ADS  Google Scholar 

  32. E. A. Pier and J. H. Krolik, Astrophys. J. 418, 673 (1993).

    Article  ADS  Google Scholar 

  33. H. Falcke, Gopal-Krishna, and P. L. Biermann, Astron. Astrophys. 298, 395 (1995).

    ADS  Google Scholar 

  34. B. L. Fanaroff and J. M. Riley, Mon. Not. R. Astron. Soc. 167, 31 (1974).

    ADS  Google Scholar 

  35. A. H. Bridle and R. A. Perley, Ann. Rev. Astron. Astrophys. 22, 319 (1984).

    Article  ADS  Google Scholar 

  36. C. Xu, M. Livio, and S. Baum, Astron. J. 118, 1169 (1999).

    Article  ADS  Google Scholar 

  37. N. M. Nagar, A. S. Wilson, and H. Falcke, Astrophys. J. 559, L87 (2001).

    Article  ADS  Google Scholar 

  38. A. Thean, A. Pedlar, M. J. Kukula, et al., Mon. Not. R. Astron. Soc. 314, 573 (2000).

    Article  ADS  Google Scholar 

  39. H. Falcke, N. M. Nagar, A. S. Wilson, et al., Astrophys. J. 542, 197 (2000).

    Article  ADS  Google Scholar 

  40. J. S. Ulvestad and L. C. Ho, Astrophys. J. 562, L133 (2002).

    Article  ADS  Google Scholar 

  41. L. S. Ho and C. Y. Peng, Astrophys. J. 555, 650 (2001).

    Article  ADS  Google Scholar 

  42. M. J. Rees, Ann. Rev. Astron. Astrophys. 22, 471 (1984).

    Article  ADS  Google Scholar 

  43. G. Ghisellini and A. Celotti, Astron. Astrophys. 379, L1 (2001).

    Article  ADS  Google Scholar 

  44. R. Moderski, M. Sikora, and J.-P. Lasota, Mon. Not. R. Astron. Soc. 301, 142 (1998).

    Article  ADS  Google Scholar 

  45. E. Ya. Vil’koviskii and O. G. Karpov, Pis’ma Astron. Zh. 22, 168 (1996) [Astron. Lett. 22, 148 (1996)].

    Google Scholar 

  46. E. Y. Vilkoviskij, S. N. Efimov, O. G. Karpova, et al., Mon. Not. R. Astron. Soc. 309, 80 (1999).

    Article  ADS  Google Scholar 

  47. E. Y. Vilkoviskij and B. Cherny, Astron. Astrophys. 387, 804 (2002); astro-ph/0203226.

    Article  ADS  Google Scholar 

  48. M. C. Begelman and D. F. Cioffi, Astrophys. J. 345, L21 (1989).

    Article  ADS  Google Scholar 

  49. R. Blandford and D. Eichler, Phys. Rep. 154, 1 (1987).

    Article  ADS  Google Scholar 

  50. S. K. Chakrabarti, Mon. Not. R. Astron. Soc. 235, 33 (1988).

    MATH  ADS  Google Scholar 

  51. A. M. Hillas, Ann. Rev. Astron. Astrophys. 22, 425 (1984).

    Article  ADS  Google Scholar 

  52. C. J. Cesarsky, Nucl. Phys. B (Proc. Suppl.) 28, 51 (1992).

    Article  ADS  Google Scholar 

  53. M. J. Rees, Mon. Not. R. Astron. Soc. 228, 47 (1987).

    ADS  Google Scholar 

  54. M. Sikora, G. Madejski, R. Moderski, et al., Astrophys. J. 484, 108 (1997).

    Article  ADS  Google Scholar 

  55. D. Alloin, R. Barvainis, and S. Guilloteau, Astrophys. J. 528, L81 (2000).

    Article  ADS  Google Scholar 

  56. C. A. Norman, D. B. Melrose, and A. Achterberg, Astrophys. J. 454, 60 (1995).

    Article  ADS  Google Scholar 

  57. V. L. Ginzburg and S. I. Syrovatskii, The Origin of Cosmic Rays (MacMillan, New York, 1964).

    Google Scholar 

  58. A. V. Uryson, Pis’ma Astron. Zh. 27, 901 (2001) [Astron. Lett. 27, 775 (2001)].

    Google Scholar 

  59. M. Sikora, J. G. Kirk, M. C. Begelman, and P. Schneider, Astrophys. J. 320, L81 (1987).

    Article  ADS  Google Scholar 

  60. R. Simcoe, K. K. McLeod, J. Schachter, and M. Elvis, Astrophys. J. 489, 615 (1997).

    Article  ADS  Google Scholar 

  61. F. W. Stecker, C. Done, M. H. Salamon, and P. Sommers, Phys. Rev. Lett. 66, 2697 (1991).

    Article  ADS  Google Scholar 

  62. V. V. Zheleznyakov, Radiation in Astrophysica Plasmas (Yanus-K, Moscow, 1997) [in Russian].

    Google Scholar 

  63. D. N. Pochepkin, V. S. Ptuskin, S. I. Rogovaya, and V.N. Zirakashvili, in Proc. 24th Int. Cosmic Ray Conf., Rome (1995), Vol. 3, p. 136.

    Google Scholar 

  64. E. Ya. Vyl’koviskii, private communication.

  65. L. D. Landau and E. M. Lifshits, Field Theory (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  66. A. Watson, in Extremely High Energy Cosmic Rays: Astrophysics and Future Observatories, Ed. by M. Nagano (Inst. Cosmic-Ray Research, Tokyo, 1996), p. 362.

    Google Scholar 

  67. F. Aharonian, A. A. Belyanin, E. V. Derishev, et al., Phys. Rev. D 66, 023005 (2002).

    Google Scholar 

  68. V. Berezinsky and A. Vilenkin, Phys. Rev. Lett. 79, 5202 (1997).

    ADS  Google Scholar 

  69. V. A. Kuz’min and V. A. Rybakov, Yad. Fiz. 61, 1122 (1998).

    Google Scholar 

  70. T. Totani, Astrophys. J. 502, L13 (1998).

    Article  ADS  Google Scholar 

  71. M. Nagano and A. A. Watson, Rev. Mod. Phys. 72, 689 (2000).

    Article  ADS  Google Scholar 

  72. V. A. Tsarev and V. A. Chechin, Dokl. Akad. Nauk 383, 486 (2002) [Dokl. Phys. 47, 275 (2002)].

    Google Scholar 

  73. Y. A. Fomin, N. N. Kalmykov, G. B. Christiansen, et al., in Proc. 26th Int. Cosmic Ray Conf., Salt Lake City (1999), Vol. 1, p. 526.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Zhurnal, Vol. 81, No. 2, 2004, pp. 99–107.

Original Russian Text Copyright © 2004 by Uryson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uryson, A.V. Seyfert nuclei as sources of ultrahigh-energy cosmic rays. Astron. Rep. 48, 81–88 (2004). https://doi.org/10.1134/1.1648071

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1648071

Keywords

Navigation