Skip to main content
Log in

Phonon-assisted radiative electron-hole recombination in silicon quantum dots

  • Proceedings of the Conference Dedicated to O. V. Losev (1903–1942) (Nizhni Novgorod, Russia, March 17–20, 2003)
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The temperature dependence of the photoluminescence (PL) spectrum of silicon quantum dots (QDs) is studied both theoretically and experimentally, and the time of the corresponding electron-hole radiative recombination is calculated. The dependence of the recombination time on the QD size is discussed. The experiment shows that the PL intensity decreases by approximately 60% as the temperature increases from 77 to 293 K. The calculated characteristic recombination time has only a weak temperature dependence; therefore, the decrease in the PL intensity is associated primarily with nonradiative transitions. It is also shown that the phonon-assisted radiation is much more efficient than the zero-phonon emission. Moreover, the zero-phonon recombination time depends on the QD radius R as R 8, whereas the phonon-assisted recombination time depends on this radius as R 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Takeoka, M. Fujii, and S. Hayashi, Phys. Rev. B 62(24), 16820 (2000).

  2. Y. Kanemitsu and S. Okamoto, Phys. Rev. B 56(24), 15561 (1997).

  3. Y. Kanemitsu, Phys. Rev. B 53(20), 13515 (1996).

    Google Scholar 

  4. Y. Kanemitsu, N. Shimizu, T. Komoda, et al., Phys. Rev. B 54(20), 14329 (1996).

  5. T. Shimizu-Iwayama, S. Nakao, and K. Saitoh, Appl. Phys. Lett. 65(14), 1814 (1994).

    Article  ADS  Google Scholar 

  6. G. A. Kachurin, I. E. Tischenko, K. S. Zhuravlev, et al., Nucl. Instrum. Methods Phys. Res. B 122, 571 (1997).

    Article  ADS  Google Scholar 

  7. D. I. Tetelbaum, S. A. Trushin, V. A. Burdov, et al., Nucl. Instrum. Methods Phys. Res. B 174, 123 (2001).

    Article  ADS  Google Scholar 

  8. T. Takagahara and K. Takeda, Phys. Rev. B 46(23), 15578 (1992).

  9. D. I. Tetelbaum, V. A. Burdov, S. A. Trushin, and A. N. Mikhaylov, in Proceedings of 10th International Symposium on Nanostructures: Physics and Technology (St. Petersburg, 2002), p. 206.

  10. A. I. Ansel’m, Introduction to the Theory of Semiconductors (Nauka, Moscow, 1978).

    Google Scholar 

  11. M. Voos, Ph. Uzan, C. Delalande, et al., Appl. Phys. Lett. 61(10), 1213 (1992).

    Article  ADS  Google Scholar 

  12. A. A. Kopylov, Fiz. Tekh. Poluprovodn. (Leningrad) 16(12), 2141 (1982) [Sov. Phys. Semicond. 16, 1380 (1982)].

    Google Scholar 

  13. V. A. Burdov, Zh. Éksp. Teor. Fiz. 121(2), 480 (2002) [JETP 94, 411 (2002)].

    Google Scholar 

  14. M. S. Hybertsen, Phys. Rev. Lett. 72(10), 1514 (1994).

    Article  ADS  Google Scholar 

  15. O. J. Glembocki and F. H. Pollak, Phys. Rev. B 25(2), 1193 (1982).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 46, No. 1, 2004, pp. 31–34.

Original Russian Text Copyright © 2004 by Belyakov, Burdov, Gaponova, Mikhaylov, Tetelbaum, Trushin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belyakov, V.A., Burdov, V.A., Gaponova, D.M. et al. Phonon-assisted radiative electron-hole recombination in silicon quantum dots. Phys. Solid State 46, 27–31 (2004). https://doi.org/10.1134/1.1641914

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1641914

Keywords

Navigation