Skip to main content
Log in

Solar analogs: Spectral energy distributions and physical parameters of their atmospheres

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The angular diameters, radii, and effective temperatures of 16 G0–G5 main-sequence stars with color excesses 0.60≤B-V≤0.68 and parallaxes derived from Hipparcos data have been determined using their infrared fluxes, obtained from JHKLM photometric observations. For all the stars except BS 483, these effective temperatures differ from the spectroscopic temperatures by no more than 1–2%. Such differences are within the uncertainties expected for the IR-flux method. The effective temperatures of BS 483 derived from its infrared fluxes are 3% higher than those indicated by spectroscopic observations; this may be due to the specific atmospheric structure of this star. Spectroscopic observations at 3400–7500 Å and JHKLM photometric observations are compared with analogous solar data and Kurucz models. The best agreement with the model with T eff=5750 K and logg=4.5 in the interval 4400–7500 Å was obtained for BS 7503 and BS 7504 (16 Cyg A and 16 Cyg B). The infrared color indices H-K, K-L, and K-M for these stars differ from the corresponding solar indices, and their angular diameters grow with wavelength, which is not the case for the Sun. H-K for BS 6060, currently considered to be the closest analog to the Sun, is near the solar value. The vast majority of the stars studied (13 of 16) have higher luminosities than the Sun. These include 16 Cyg A, 16 Cyg B, and 51 Peg, which thus cannot be considered full “twins” of the Sun.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Cayrel de Strobel, Astron. Astrophys. Rev. 7, 243 (1996).

    Article  ADS  Google Scholar 

  2. G. Cayrel de Strobel, Hipparcos and Tycho Catalogues ESA SP-1200 (1997).

  3. I. B. Voloshina, I. N. Glushneva, V. T. Doroshenko, et al., Spectrophotometry of Bright Stars, Ed. by I. N. Glushneva (Nauka, Moscow, 1982).

    Google Scholar 

  4. I. N. Glushneva, E. A. Makarova, and A. V. Kharitonov, Highlights Astron. 7, 853 (1986).

    ADS  Google Scholar 

  5. V. G. Kornilov, I. M. Volkov, A. I. Zakharov, et al., Tr. Gos. Astron. In-ta im. P.K. Shternberga 63 (1991).

  6. I. N. Glushneva, Astron. Zh. 71, 652 (1994).

    ADS  Google Scholar 

  7. I. N. Glushneva, G. V. Borisov, V. I. Shenavrin, et al., Astron. Astrophys. Trans. 18, 633.

  8. Solar Analogs: Characteristics and Optimum Candidates, Ed. by J. Hall (Lowell Observatory, 1998), p. 182.

  9. G. Cayrel de Strobel and E. D. Friel, Solar Analogs: Characteristics and Optimum Candidates, Ed. by J. Hall (Lowell Observatory, 1998), p. 93.

  10. A. É. Radzhip, V. I. Shenavrin, and V. G. Tikhonov, Tr. Gos. Astron. In-ta im P.K. Shternberga 58, 119 (1986).

    ADS  Google Scholar 

  11. H. L. Johnson, R. I. Mitchell, B. Iriarte, et al., Comm. Lunar Planet Lab. 63, 99 (1996).

    Google Scholar 

  12. J. Koornneef, Astron. Astrophys., Suppl. Ser. 51, 489 (1983).

    ADS  Google Scholar 

  13. D. E. Blackwell and M. J. Shallis, Mon. Not. R. Astron. Soc. 180, 177 (1977).

    ADS  Google Scholar 

  14. R. L. Kurucz, CD ROM 13 (1993).

  15. I. N. Glushneva, Astron. Zh. 60, 560 (1983).

    ADS  Google Scholar 

  16. E. A. Makarova, A. V. Kharitonov, T. V. Kazachevskaya, et al., Balt. Astron. 7, 467 (1998).

    ADS  Google Scholar 

  17. I. N. Glushneva, A. V. Kharitonov, L. N. Knyazeva, and V. I. Shenavrin, Astron. Astrophys., Suppl. Ser. 92, 1 (1992).

    ADS  Google Scholar 

  18. D. S. Hayes, Calibration of Fundamental Stellar Quantities, Ed. by D. S. Hayes, L. E. Pasinetti, and A. G. Philip (Reidel, Dordrecht, 1985), p. 225.

    Google Scholar 

  19. M. S. Bessel and J. M. Brett, Publ. Astron. Soc. Pac. 100, 1134 (1988).

    ADS  Google Scholar 

  20. A. V. Kharitonov and L. N. Knyazeva, Izv. VUZ (Radiofizika) 39(10), 1234 (1996).

    Google Scholar 

  21. L. Colina, R. C. Bohlin, and F. Castelli, Astron. J. 112, 307 (1996).

    Article  ADS  Google Scholar 

  22. D. Labs and H. Neckel, Zeits. Astrophys. 69, 1 (1968).

    ADS  Google Scholar 

  23. E. A. Makarova, A. V. Kharitonov, and T. V. Kazachevskaya, Solar Radiation Flux (Nauka, Moscow, 1991).

    Google Scholar 

  24. W. Wamsteker, Astron. Astrophys. 97, 329 (1981).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Zhurnal, Vol. 77, No. 4, 2000, pp. 285–294.

Original Russian Text Copyright © 2000 by Glushneva, Shenavrin, Roshchina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glushneva, I.N., Shenavrin, V.I. & Roshchina, I.A. Solar analogs: Spectral energy distributions and physical parameters of their atmospheres. Astron. Rep. 44, 246–254 (2000). https://doi.org/10.1134/1.163847

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.163847

Keywords

Navigation