Skip to main content
Log in

Hydrodynamic instabilities and photospheric structures

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The possible role of convective-flow instabilities in the formation of certain structures observed in the solar photospheric and subphotospheric layers is discussed. High-resolution video records suggest that the granulation field is structurally and dynamically ordered in accordance with the mesogranulation pattern. Thus, it strikingly resembles the so-called spoke patterns of convection observed experimentally. These patterns could be produced by some instability of the mesogranular flow. Mesogranules seem to be the main structural features of the velocity field, whereas granules behave as relatively passive elements—blobs of overheated material carried by the mesogranular flow. One possible mechanism for their origin is the development of a three-dimensional analogue of the one-blob or the two-blob instability known from studies of convection. In particular, if this interpretation is adopted, the phenomenon of exploding granules can be accounted for in a natural way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Getling, Rayleigh-Bénard Convection: Structures and Dynamics (World Scientific, Singapore, 1998; URSS, Moscow, 1999).

    Google Scholar 

  2. A. V. Getling, Usp. Fiz. Nauk 161(9), 1 (1991) [Sov. Phys. Usp. 34 (9), 737 (1991)].

    Google Scholar 

  3. G. W. Simon and R. B. Leighton, Astrophys. J. 140(3), 1120 (1964).

    ADS  Google Scholar 

  4. L. J. November, J. Toomre, K. B. Gebbie, et al., Astrophys. J. Lett. 245(3), L123 (1981).

    ADS  Google Scholar 

  5. A. V. Getling, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 45 (1975).

    Google Scholar 

  6. A. V. Getling, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 16(5), 529 (1980).

    ADS  Google Scholar 

  7. A. M. Title, T. D. Tarbell, G. W. Simon, and the SOUP Team, Adv. Space Res. 8(8), 253 (1986).

    ADS  Google Scholar 

  8. R. Muller, H. Auffret, T. Roudier, et al., Nature 356(6367), 322 (1992).

    Article  ADS  Google Scholar 

  9. S. I. Amal’skaya, Soln. Dannye, No. 3, 87 (1990).

    Google Scholar 

  10. P. Foukal, Solar Astrophysics (Wiley, New York, 1990).

    Google Scholar 

  11. A. M. Title, T. D. Tarbell, K. P. Topka, et al., Astrophys. J. 336(1), 475 (1989).

    ADS  Google Scholar 

  12. G. W. Simon, A. M. Title, and N. O. Weiss, Astrophys. J. 375(2), 775 (1991).

    ADS  Google Scholar 

  13. G. W. Simon, A. M. Title, and N. O. Weiss, Adv. Space Res. 11(5), 259 (1991).

    ADS  Google Scholar 

  14. F. H. Busse and R. M. Clever, Arch. Mech. 43(5), 565 (1991).

    Google Scholar 

  15. F. H. Busse, Acta Mech. Suppl. 4, 11 (1994).

    Google Scholar 

  16. E. W. Bolton, F. H. Busse, and R. M. Clever, J. Fluid Mech. 164, 469 (1986).

    ADS  MathSciNet  Google Scholar 

  17. H. I. Abdussamatov and A. G. Zlatopol’skii, Pis’ma Astron. Zh. 23(11), 863 (1997) [Astron. Lett. 23, 752 (1997)].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Zhurnal, Vol. 77, No. 1, 2000, pp. 64–73.

Original Russian Text Copyright © 2000 by Getling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Getling, A.V. Hydrodynamic instabilities and photospheric structures. Astron. Rep. 44, 56–63 (2000). https://doi.org/10.1134/1.163827

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.163827

Keywords

Navigation